
Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

6

Improving Software Requirement Elicitation using Q-Use

Case

Sakthi Kumaresh

Dept. of Computer Science
M.O.P. Vaishnav College for Women, Chennai,

India

S. Sruthi
Dept. of Computer Science

M.O.P. Vaishnav College for Women, Chennai,
India

ABSTRACT
Requirement elicitation has been one of the most challenging

aspects of software development. Not only complete

requirements are difficult to gather at the beginning of a

project, they tend to change and widen along with the duration

of the project. In addition the largest number of defects that

remain in delivered software is attributable to defective

requirements. They are also very costly to correct, which can

be as much as several orders of magnitude more than those

introduced in the earlier stages of software development. A

use case describes how someone or something would interact

with proposed system. Use cases are commonly used as a tool

during requirements engineering [3]. This paper presents a

systematic approach to eliciting quality requirements based on

use cases, with emphasis on building the right product. The

approach extends traditional use cases to also cover Q-Use

Case, and is potentially useful for checking against the 4 C‟s –

Correctness, Completeness, Clarity and Consistency in order

to strengthen requirement elicitation and to achieve high

quality in software development.

Keywords

Requirement Elicitation, Use Case, Defects, Requirement

Engineering.

1. INTRODUCTION:
The greatest challenge to any thinker is stating the problem in

a way that will allow a solution. In software development

these words are more apt from requirements elicitation point

of view. The engineering of requirements may be the most

important activity of the software development life cycle. This

is because requirements ultimately define what developed

systems will be like and possibly, how they will be developed.

This paper proposes a new use case called Q-Use Case (QUC)

apart from normal use case that are used in use case diagram.

QUC does the verification of use cases by following quality

use case checklist against the use cases

1.1 Use case
A use case depicts flow of events of a particular system to be

proposed and is represented in form of its own descriptive

diagrams. Use case methodology is used to identify, clarify

and organize system requirements. Each use case describes

the interactions between the system and the user (human). The

use case technique consists of a use case model and a method

to create use case models. The use case model consists of use

case diagrams and several use case descriptions. Use cases

also indirectly convey how the users should interact so that

the system will be able to perform its intended function. An

actor constitutes set of roles that users can perform when

interacting with the system [8]. Use cases are used in a use

case diagram to show the relationship with the system or

entity or their actors. Use cases act as bridges between user,

requirement and implementation of the system. Constructing a

use-case model includes three stages:

 Identify the original(actual) use cases to capture

minimum requirements,

 Identify extension use cases to construct a more

complete model than before.

 Refine a use case model to enhance reusability

1.2 Use case approach:
In use case approach, an actor is a representation of all users

who interact with the system in a given role. The goal of the

use case approach is to describe realistic scenarios for using

the features defined in the requirements. The relationships

uses and extends between use cases in use case approach

specifies how one use case may be embedded into another

one, extending its functionality. For example, a Location

Based Services System use case might look like Fig 1. A use

case gathers functional requirements of the system. Functional

requirements describe what the system should do whereas

Non functional requirements describe how the system will do

it. Non functional requirements are not covered under use case

modeling [5]. There is no absolute scale consideration of a

non functional requirement.

Figure 1 Use Case diagram for Location Based Services

System

Registration

Verification

Profile Setting

Unregister

User

Services Data Provider

Administration Administrator

Registration
Description

Verification
Description

Profile Setting
Description

Service
Description

Unregister
Description

Administration
Description

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

7

1.3 Why consider use cases for requirement

elicitation?
The most complex way while creating sophisticated software

systems is to “build the right product”. Projects that is

incomplete and difficult to understand the requirement

specifications of the system end up with scopelessness,

expensive rework, exceeding the time limit, or even

abandonment. Hence, this study focuses on flaw free

requirement elicitation approach, by way of integrating Q-Use

Case along with normal use case approach.

2. LITERATURE REVIEW:-
A use case does not have variation in the family of products.

Many experience that the decision on abstractedness is

arduous in which taking the use cases is out of control and

propagation in their use cases. The core functions and features

mentioned in many papers are more brief. Non-functional

requirements do not require any function to be performed by

the system. They are not limited to any aspects of controlling

the requirements elicitation as they do not require the basic

functionalities. The requirements which are discovered to

enlighten the path of software development form the basis of

the quality of the system. Many teams tend to cause utile

decay by identifying the use cases closely [14]. The menace is

that system will not be very stretchable. The papers presented

in IEEE and ICJA mainly focuses on qualities like

trustworthy, the time factor, renown and tentative. The models

mentioned under the software development uses techniques

like use cases and activity charts which helps to discover the

requirements and functionalities of the system, points the

intrinsic behavior of the essence and software developed.

 The Reasons mentioned for why using use cases for

requirements gathering are [16]:-

 They deed the development process

 They are easily understood and read.

 They can recognize the element reprocess

 They can be used to grade needs

 In some papers in order to improve the levels of

understanding use cases with the support of use case modeling

they derive the understanding visually by viewing the picture.

Many methodologies are mentioned by the papers in order to

provide the needs and face the challenges to build huge and

complex projects, tools are used for the use of semantic web

technologies and to store the information, the branch of Meta

physics (ontology) present common reference for the creators

of software engineering [13].They use requirements

engineering to support use cases where the requirements are

based on system, user, functional, non-functional. The use

cases must be validated by themselves. Innovatory solutions

cannot be contemplated. Use case doesn‟t cover some

software aspects. Many approaches like to derive use cases

from event table have been taken in order to speed up

production of use case diagrams. The literature review for

this thesis was gathered from many research papers.

3. PROBLEMS FACED IN

REQUIREMENT DEFECTS:
 Ambiguous understanding of processes

 Inconsistency within a single process by multiple users

 Insufficient input from stakeholders

 Conflicting stakeholder interests

 Changes in requirements after project has begun

The requirement defects should be prevented otherwise the

flow of design and the source code faces a downstream. Since

requirements are the most important aspect of producing

quality software, the Q-Use Case proposed in this study leads

to solve many laborious problems and errors that might occur

during elicitation technique [18]. By improving requirements

elicitation, the requirements engineering process can be

improved, resulting in enhanced system requirements and

potentially a much better system.

3.1 Need for Q-Use Case
We accept that testing the software is an integral part of

building a system. However, if the software is based on

inaccurate requirements then, despite well-written code, the

software will be unsatisfactory. Instead of limiting our testing

to code, we should start testing as soon as we start work on

the requirements for a product [6]. The aim of this work is to

overcome the defects related to use case as early as they can

be identified and hence prevent them from being reflected in

the design and implementation. By incorporating QUC

proposed in this study, many of the requirement elicitation

defects can be avoided.

3.2 How to uncover requirement defects in

Q-Use Cases?
Our Q-Use Cases aims to provide quality use case models

which focuses on four factors where each factor ensures that

the use cases are correctly framed based on the requirements

elicitation, designed, implemented and tested. In the part of

testing we check whether the use case developed for software

is a quality one or not [6]. In order to check its quality and

recover from its defects we introduce “Check Condition

Testing”. The following four factors need to be considered to

recover defects from use case.

 Correctness

 Completeness

 Clarity

 Consistency

4. PROPOSED SYSTEM:-
In comparing with other methods use case reduces complexity

and it creates a mutual understanding between the project

builders and the reader‟s .This section organizes the ideas of

the authors improving the software requirement elicitation

method using Q-Use Case.

The Q-Use Case will perform Check Condition testing using

the following attributes:

Correctness: Every requirement should describe each function

that has been used in the system. Only when the function is

described the cycle will be understood by the reader. The user

can only inspect the correctness of the system. If the system

fails to describe its function, there are chances of the failure of

the system. The use case should contain all that is required to

answer the problem

Completeness: The limitations and features of the function

and its work of nature in its environment must be known

before it is implemented in the system. The set of uses cases

representing the function of the system should be complete

i.e. every function should act on its own and along with other

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

8

functions to achieve the goal. There should not be any or

misleading information during elicitation process. The use

case must lead a logical path with events in the description in

the correct order.

Clarity: The phrases describing the use cases and actors

should meet the requirements of the user i.e. it should be

understandable and must give a clear view of the system to

the user. Simple present tense should be used throughout the

description. Adverbs, adjectives, pronouns, synonyms and

negatives can be avoided while framing the description.

Consistency: Each requirement should document something

the customers really need or something that is required for

conformance to an external requirement. If all the

requirements are regarded as equally important, the project

manager is less able to react to new requirements added

during development, budget cuts, schedule overruns, or the

departure of a team member. Common terms should be

defined and used across all use cases. It should link each

software requirement to its source that is a higher-level

system requirement, a use case, or the customer statement.

Figure 2 demonstrates the process of check condition testing

by the quality personnel. The quality personnel use the Q-Use

Case to check for the correctness, completeness, clarity and

consistency.

Figure 2 Integration of Q-Use case in use case modeling

4.1 Q-Use Case Scenario

Q-Use Case checks the use cases in the system in quality

aspect. Once the use cases and its description are described in

the use case model, the quality personnel (one who performs

quality audit) should check the use cases involved in the

system in terms of 4C „s Correctness, Completeness, Clarity

and Consistency in order to overcome the anomalies in the

requirement elicitation process. The steps taken by quality

personnel in doing the Check Condition testing involves the

following:

Step 1: Check for Correctness:-

i. The quality personnel will check for the functioning

of the other use cases using the Q-Use Case.

ii. It checks whether that every use case precisely state

one or more functional requirements used by the

system.

iii. It also checks whether every use case used in the

system are prioritized.

iv. The QUC identifies the malfunctioning of a use

case.

Step 2: Check for Completeness:-

i. The QUC will check that the use cases used in the

system interprets all of the functional requirements.

ii. The QUC checks whether that all use case used in

the system is necessary and have a role to be played

in the system.

iii. The QUC detects for the misleading path in the

system.

Step 3: Check for Consistency:-

i. The QUC checks whether that every use case goes

hand-in–hand with the co-coordinating use cases.

ii. It checks whether the use cases are non- conflicting.

iii. It checks if there is any redundant information in

use case scenario.

iv. It checks whether common terms like specific events

or actors are defined consistently across all use

cases.

v. It checks whether all use cases are externally

consistent with other modeling events like class

diagram, object diagram etc.

Step 4: Check for Clarity:-

i. The QUC checks for Simplicity of the use case.

ii. The QUC checks whether the use cases used in the

system are sufficiently precise and unambiguous

(i:e) It checks whether the use cases are

understandable to those who will need to work them

later.

iii. The QUC also checks whether the use cases have

only one interpretation.

iv. It also checks if the terms used for specifying actors

are included in the dictionary and glossary for the

purpose of clarity to other stakeholders in the

system.

Activity diagram is basically a flow chart to represent the flow

form one activity to another activity. Activity diagrams

seizure the dynamic behavior of the system and does not have

a message flow from one activity diagram to another. Activity

is the main element of the diagram itself. It is the function

Correctness
Completeness
Clarity
Consistency

Quality Personnel

Check-in

Express
Check-in

Boarding

Passenger

Q-Use Case

<<Quality Check>>

<<Quality Check>>

<<Quality Check>>

Baggage

Transportation

Requistion
Passenger List

<<Quality Check>>

Customs of

Destination

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

9

carried out by the system. The activity diagram should

identify these four elements:

 Activities

 Association

 Conditions

 Constraints

This activity diagram depicted in fig 3 performs the following

activities:

 Send use case description for verification by Quality

Personnel(QP)

 QP confirms the receipt of use case.

 QP Checks the use case for 4C‟s using check

condition testing

 If the testing is satisfied, use cases passes the

condition testing

 If it is not, the use case scenario after further

interaction with actor.

 Figure 3 Activity Diagram for Q-Use Case.

5. BENEFITS OF USING PROPOSED

SYSTEM:-
Using Q-Use Case, the functions proposed in the system are

checked for their quality. Q-Use Case crystallizes your vision

of the product‟s behavior as specified in the requirements and

can reveal the omissions and ambiguities in the system.

It does not make the reader to guess the work or functioning

of the system. It provides reality check on what can be done

and cannot be done technically, and what can be done only at

excessive cost .It allows you to trace each requirement back to

its origin. It adds priorities to requirements where the project

manager will be able to react to requirements that were newly

added during development. The reader exactly gets one clear

picture of the interpretation. It checks whether each

requirement is simple and straight forward and does not

include technical jargons. The model can be lead to more

inspections and demonstrations where it is doubly verified. It

is hard to spot missing requirements because they aren‟t there.

Consistent requirements do not conflict with other software

requirements. Requirements go hand in hand with each other.

The model can be tested for quality even after some

modification applied to the system. Each requirement can be

referred easily as they are uniquely labeled. It easily identifies

the errors or the things which are left out while designing.

6. CONCLUSION
Use case diagram exhibits the interplay between actors and

users. Requirement elicitation techniques are the most

competing technique in software development. In this paper,

we have described about the effectiveness of using Q-Use

Case in requirement elicitation to improve software

development. This paper also highlights the importance of

4C‟s - Correctness, Completeness, Clarity, and Consistency in

use case description. The actor (quality personnel) in the use

case diagram (fig 2) plays a vital role in adopting Check

Condition Testing for normal use cases in the use case

diagram.

In this study, the role played by the quality personnel when

checking the 4 C‟s is mentioned in the form of Q-Use Case

scenarios. The Q-Use Case used in this study help us to

realize its importance in achieving quality in requirement

elicitation

The Check Condition Testing that we have proposed in this

paper limits its verification of use case with respect to 4C‟s.

This study can be extended by adopting more quality check

parameters in Check Condition Testing thereby we can

prevent most of the defects occurring in requirements

gathering which in turn would help us “to build the right

product”.

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

10

7. REFERENCES
[1] Improving Requirements Quality using Essential Use

Case Interaction Patterns, Massila Kamalrudin, John

Hosking, John Grundy ICSE’11, May 21–28, 2011,

Honolulu, Hawaii, USA.

[2] Eliciting security requirements with misuse cases

Guttorm Sindre Æ Andreas L. Opdahl Received: 15

February 2002 / Accepted: 5 March 2004 / Published

online: 24 June 2004 _ Springer-Verlag London Limited

2004

[3] Requirements Elicitation with Use Cases Shane Sendall

and Alfred Strohmeier Swiss Federal Institute of

Technology in Lausanne Software Engineering Lab

[4] An MKS White Paper By Dennis Elenburg Application

Engineer

[5] 7 “S” of Defects Occurrence – A Case Study, Arupratan

Santra

[6] Describing Use Cases with Activity Charts, Jes´us M.

Almendros-Jim´enez and Luis Iribarne

[7] Analyzing User Requirements by Use Cases: A Goal-

Driven Approach, Jonathan Lee and Nien-Lin Xue,

National Central University

[8] Analysis of use case approaches to requirements

engineering, Virpi Mäkinen

[10] Bjorn Regnell, Requirements Engineering With Use

Cases – a basis for software development , Department

of Communication Systems, LUND University, Lund

1999

[11] Bagiampou, M. A Use Case Diagrams ontology that can

be used as common reference for Software Engineering

education , Fac. of Math., Univ. of Patras, Patras,

Greece Kameas, A. ,6-8 Sept2012

[12] Ruth Malan and Dana Bredemeyer, Functional

Requirements and Use Cases

[13] Chaelynne M. Wolak, Gathering Requirements The Use

Case Approach, School of Computer and Information

Sciences , Nova Southeastern University ,June 2001

[14] Andrew Gemino, Drew Parker, Use Case Diagrams in

Support of Use Case Modeling: Deriving Understanding

from the Picture, Simon Fraser University, Canada

[15] Søren Lauesen & Otto Vinter, Preventing Requirement

Defects, IT University

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bagiampou,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kameas,%20A..QT.&newsearch=partialPref

