
Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

1

Effective Path Selection to Estimate Software Reliability

B.M.Gouthami

PG student,
Rajalakshmi Engg College,
Chennai, Tamilnadu,India.

P.Kumar

Associate Professor,
Rajalakshmi Engg College,
Chennai. Tamilnadu, India.

ABSTRACT

With the increase in use of software system for complex

applications there is a growing need for software engineers to

prove its reliability and assure its quality. Software reliability

and quality assurance has high correlation with failure

intensity. Failure can be best analyzed by white box testing.

Basis path testing is an important white box testing approach,

as the coverage in path testing is high it is directly

proportional to its reliability. We propose a frame work to test

the path for a structural language. Three major elements of

structural language include sequence, branches and loop

structures. Evaluating the reliability of each node in turn helps

in evaluating the path reliability. Further, software reliability

is achieved by correlating the reliability of each unique path

followed by the system. Specifically, higher the path coverage

higher is the accuracy of reliability. Hence the proposed

system helps in evaluating the software reliability based on

path testing for a system developed with structural language.

Also critical nodes could be identified with which the critical

paths are estimated hence to prioritize fault correction.

Keywords

Software reliability, Path testing

1. INTRODUCTION

Software Reliability is used to determine the fault free

operation of a system. Most common method used to

determine the reliability is using classical reliability model.

To predict the reliability of a system using reliability models

large set of test data is essential. Alternate approach to

evaluate reliability of a system is using path reliability. It is

evident that path reliability plays an important and critical role

for determining the reliability of a system.

Software reliability is an open problem. The task of software

reliability is to achieve a fault free system. The challenge is to

accurately evaluate the reliability of the system and use the

result to effectively deliver a better system with least errors.

The problem of reliability prediction may vary from the actual

reliability of the system. The goal of this system is to

effectively select the possible paths of the system using graph

data structure. The selected paths are tested to evaluate the

path reliability with which additive approach is used to

evaluate the system reliability. Optimized solution for the test

results is used to improve the reliability of the system.

Fig .1Architecture diagram

Fig.1. Shows that modular system consists of sequence,

branch and loops in it. This system is converted into flow

graph which consists of graphs and edges. From the obtained

flow graph of the system all the paths are identified with

which path testing is performed. This base work is composed

as one component and the resultant data is stored in a data

base. From the result reliability parameters are evaluated.

Finally the obtained results are optimized.

Software reliability

 Software reliability is defined as the failure free

operation of the software system. Reliability of the system

could be measured based on the errors produced by it. The

misbehavior of the system could be identified if it is tested.

Hence in order to evaluate the software reliability failure data

of the system is required. Failure data could be best obtained

if the system is tested completely and consistently.

Path testing

Path testing is the type of white box testing. In white box

testing in the internal structure of the system is considered for

DATA BASE

SOFTWARE MODULAR SYSTEM

 PERFORMANCE EVALUATION

 OPTIMIZE TEST RESULTS

Compose Data Path

Reliability

Path Testing

Sequence,

Branch,

Loop

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

2

testing. Since there is a high correlation between the software

reliability and white box testing, path testing is used to

evaluate the reliability of the system. In order to obtain the

accurate reliability all the paths in the system should be tested.

In order to do so all the possible paths in the system is to be

identifies. Once all the paths are identified each path is tested

to evaluate the path reliability with which the system

reliability is evaluated.

2. REVIEW OF RELATED WORKS

S. S. Gokhale [1], have proposed a framework to evaluate the

architecture of the system based on the reliability of the

component and its application architecture. Architecture is a

framework that specifies component and interaction between

components. Analysis based on architecture is classified into

path based and state based. In path based approach the

reliability is estimated through several execution paths. Here

the transition between nodes is the probability of transition

between node i-1 to node i. In state based approach control

flow graph is mapped to a state space model. Here transition

between nodes is the transition from one state to another.

They have faced two issues, optimization of test results and

second issue, considering interface failure to evaluate

software reliability. The assumption here is that only one

component should be executed at a time.

K. Go.seva-Popstojanova and K. S. Trivedi [2] have proposed

that there is a need to model an approach that is capable of

considering the architecture and evaluating the reliability by

taking into account the interaction between components,

reliability of components and reliability of interfaces with

other components. The requirements of architecture based

approach is to identify the module i.e. smallest executable unit

of system, identify or model the architecture of the system,

identify failure behavior and combine failure with the

architecture of the system. There are three ways to combine

architecture of software with its failure behavior as state based

approach, path based approach and additive approach. In state

based approach the control flow graph is assumed to represent

the states of the system. In path based approach system

reliability is computed by considering all the possible

execution paths. In additive approach architecture of the

system is not explicitly considered. There are three major

issues arrived, there is a trade off defining the size of the

component, interface reliability is not considered and

transition probability issues are not considered.

M.Xie, G.Y.Hong and C.Wohlin, [3] have proposed practical

method to predict the software reliability using software

reliability model. In order to predict the reliability, large

amount of test data is essential. In most cases development

team will be interested to estimate the reliability in the early

phases of development. Since most of the large software

systems are developed in such a way it is the modification of

existing system, the failure data of the previous system could

be used to predict the parameters of the new system. Two

major parameters to evaluate reliability are total number of

initial faults and fault detection rate in testing. Hence the

software reliability of the new system could be predicted from

the test data of similar systems.

Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich, [4]

have proposed a way that quantifies the degree of

thoroughness of testing. Relationship between testing time,

coverage and reliability is modelled. Test coverage is

measured in terms of statement coverage, branch coverage, c-

use coverage and p-use coverage. The c-use is a set that

contains point where the variable is defined or modified

followed by the point where it is used for evaluation .The p-

pair is a set that contains the point where the variable is

defined or modified followed by the point which is the

destination of branching statement where it is used as the

predicate. It is proved that if all paths in the program have

been exercised, then all the p-use must have been covered

similarly all p-use covers ensures branch cover etc. Test data

is used to prove that defect coverage implies test coverage and

in turn helps the reliability of the system. The only issue is

that it is impossible to predict the remaining defects with

respect to the coverage.

C. Y. Huang and C. T. Lin, [5] proposed a new approach in

software reliability consideration. The general assumption is

that the detected faults are immediately corrected in the case

of a system. But in reality it is not true. Detecting fault is one

issue and correcting them is another. In this paper the faults

are classified into two types, dependent faults and

independent faults. Mutual independent faults are those that

can be removed directly. Dependent faults could be removed

only if leading faults are removed. Higher proportion of

dependent faults affects the reliability of the system. Next

issue is the optimum release time of the product. It depends on

two issues; one is reliability requirement of the product and

second issue is the budget. As the reliability requirement

increases, time taken to achieve the reliability also increases

hence increases the cost involved to achieve reliability. If the

faults are dependent faults then more time is consumed to

achieve reliability hence more cost.

Roberto, S.Russo and K. S.Trivedi [6] proposed an approach to

quantitatively identify the most critical component in order to

best assign the resource to them. A relation between software

reliability and testing time allocation is modelled. It is stated

that reliability increases as the software is improved. The

concept of visit counts is used to represent the criticality of

the component based on the combination of depth of the

component, number of user functions called and number of

test cases written for that component. System reliability is

calculated by considering the individual reliability of the

component along with the number of visits to each

component. Proposed future work of the author is to extend

the system to support concurrent systems.

Lance fiondella and Swapna S.Gokhale [7] presents an

optimization framework that considers the contribution of

each component to the system reliability.Hence to determine

the amount of effort to be allotted to each component to attain

the required reliability with minimal effort. Here the

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

3

reliability is governed by two factors, system reliability and

relation between testing effort applied to the component and

its reliability. One factor that influences the reliability of the

component is the effort spent on testing that component.

Effort spent on each component is based on the complexity of

the component and its implementation technology. The

reliability of the component with high criticality is set to

maximum. The over all effort and time available to resolve

the entire system is then distributed across the components

based on there importance in the architecture. By reducing the

target reliability of the particular component and its fault

detection rate the overall effort spent on that component could

be achieved optimally.

Chao-Jung Hsu and Chin-Yu Huang [8] proposed an adaptive

framework to incorporate path testing technique into

reliability estimation for modular software system. Path

testing is a white box technique that considers sequence,

branch and loop to evaluate the test results. Path testing is a

type of white box testing that is modeled to estimate the

reliability based on the software structure. The assumptions of

the proposed framework is that, the software system is

designed using structural or modular philosophy, all modules

are physically independent of each other, when faults are

found and removed no new faults is introduced, the transfer of

control between modules can be described by a markov

process.

3. PROBLEM FORMULATION

Software reliability specifies the fault free operation of the

system. In order to evaluate the software reliability white box

testing approach is used specifically path testing. To perform

path testing all the possible paths present in the system are to

be identified. To achieve this, initially the given system is to

be converted to its equivalent control flow graph. A control

flow graph is the one that is composed on nodes and edges.

Control flow graph is modified to compose or decompose

nodes were ever required. Using the control flow graph all the

possible paths present in the system are found using the

proposed path identification algorithm. All the identified paths

are to be tested to find faults. Path testing results are used

evaluate the path reliability with which the system reliability

can be evaluated. Next goal is to optimize the test results. To

optimize the test results critical nodes and critical paths are to

be identified. Critical nodes are nodes that are repeated in

maximum number of paths. Critical paths are paths that

contain maximum number of critical nodes. Criticality of the

paths could be used to fix the on time bugs.

4. EFFECTIVE PATH SELECTION AND

OPTIMIZATION

The steps involved in effective path selection and

optimization is as follows

Compose data

This module is concerned with composing the source code of

the given system. Source code of various sizes can be

included. Loaded file is linked with the appropriate library

files. Then loaded file is interpreted for errors present in it.

With the overall errors the reliability of the system cannot be

predicted because the errors does not relate to its complexity.

Size of the file, time of execution (calculated in ms) and

number of errors are noted.

A sample of code is given below

#include <stdio.h>

 main()

{

 int number, sum = 0, temp, remainder; ---------------- node 1

 printf("Enter a number\n"); -------------------------- node 2

 scanf("%d",&number); ------------------------------- node 3

 temp = number; -------------------------------------- node 4

 while(temp != 0 -- node 5

 {

 remainder = temp/10; -----------------------------------node 6

 sum = sum + remainder*remainder*remainder;-----node 7

 temp = temp/10; ---node 8

 }

 if (number == sum) -------------------------------------node 9

 printf("Entered number is an armstrong number.");node 10

 else ---node 11

 printf("Entered number is not an armstrong number."); node

12

return 0; --node 13

}

In compiling this data with file size of 24.5KB no errors are

traced.

Path selection and testing

Once the data is linked and compiled, control flow graph is to

be constructed. Convert the given source code into graph that

consists of nodes and edges.

Figure 2 Initial control flow graph of the sample code

6 7

9

8

1

0

1

1
1

2 1

3

1

2

3

4

5

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

4

From the control flow graph compose sequencing nodes to

form final control flow graph.

Figure 3 Final control flow graph of the sample code

Using the control flow graph all the paths present in the

system are identified by using the following steps. Construct

the adjacency matrix from the control flow graph.

Step 1: Designate any node as source node.

Step 2: From source node identify the immediate unvisited

node and place it in a queue followed by the source node.

Step 3: Now repeat the same steps by considering the recently

queued element as source node and repeat step 2.

Step 4: Continue the step 2 and step 3 until destination is

reached.

Step 5: If destination is reached then go back to the source

node to identify any addition paths if available.

The adjacency matrix for the above graph is

Nodes A B C D E F

A 0 1 1 0 0 0

B 0 0 1 0 0 0

C 0 0 0 1 1 0

D 0 0 0 0 0 1

E 0 0 0 0 0 1

F 0 0 0 0 0 0

Table 1 Adjacency matrix of the final graph

Step 1: Assume node A as the source node. Push it in the

stack.

A

Recent adjacent node of A is A. From B recent adjacent node

is C. Repeating the above procedure up to node F results in

following path.

A B C D F

Pop one element from stack. (ie.F). Now from D check for

any unvisited nodes.

Pop one element (ie.D). Now from C check for any unvisited

nodes and push it into the stack.

A B C E F

Repeating the same procedure will result in identifying all the

possible paths.

A C D F

A C E F

Once all the paths are identified then each path is tested to

identify the faults.

Reliability estimation

Reliability specifies the fault free operation of a system. To

estimate the system reliability it is essential to estimate the

reliability of each path. From our examination the identified

paths are

Path 1: A-B-C-D-F

Path 2: A-B-C-E-F

Path 3: A-C-D-F

Path 4: A-C-E-F

Reliability of path 1:

Total number of lines in path1= 5+3+1+2+1=12

 Since there is an error in node 6(ie B), reliability of path1=

5/12=41.6%. This contributes to 30% of the entire system

reliability. Since there is an error in this path 41.6% of 30% is

12.48%.All the other paths does not contain any error, hence

their reliabilities are 100% each. Path 2, path 3 and path 4

contribute 27.5%, 22.5% and 20% respectively.

Hence system reliability = 12.48+27.5+22.5+20 = 82.48%

Hence in this module path reliabilities are estimated using

which system reliability is computed.

 Optimize results

Using the reliability results it is essential to optimize the

solution since there is constraint of time and budget. In order

to optimize the solution critical nodes and critical paths are

identified. Critical node is a node that appears possibly in

maximum number of paths. Critical path is the path that

contains maximum number of critical nodes. In the specified

example the critical nodes descending order are A, C, F, B,

D, and E.

The critical paths are in the order

Path 1: A-B-C-D-F

A

D

E

B

C

F

Special Issue of International Journal of Computer Applications (0975 – 8887)

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012

5

Path 2: A-B-C-E-F

Path 3: A-C-D-F

Path 4: A-C-E-F

Hence the bug fixing has to be performed in the specified

order because of the time constraint.

5. CONCLUSION AND FUTURE WORK
The analyses on the requirements are made. Design for the

proposed system has been screened. The requirement analysis

process includes learning and determining about the working

environment, technical requirements and logical aspects or

features of the system. The design of the system has been

sketched based on the analyzed information.

The design has to be implemented in future, this design is

applicable to certain changes as and when required in order to

develop a prototype for the proposed work. The changes

inserted would merely be in the physical components or other

dependent components alone; the logical design of the system

and its functionality would be preserved.

6. ACKNOWLEGEMENT
The authors would like to thank the anonymous reviewers for

their valuable comments and suggestions to improve the

presentation of this paper. The authors extend the sincere

thanks to Rajalakshmi Engineering College for the constant

support and encouragement.

7. REFERENCES
[1] S. S. Gokhale, “Architecture-based software reliability

analysis: Overview and limitations,” IEEE

Trans.Dependable and Secure Computing, vol. 4, no. 1,

pp. 32–40, Jan.–Mar. 2007.

[2] K. Go.seva-Popstojanova and K. S. Trivedi,

“Architecture-based approach to reliability assessment of

software systems,” Performance Evaluation, vol. 45, no.

2/3, pp. 179–204, Jul. 2001.

[3] M.Xie, G.Y.Hong and C.Wohlin,“Software reliability

prediction incorporating information from similar

projects", Journal of software and

systems,vol.49,No.1,pp.43-48, 1999.

[4] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich,

“Software reliability growth with test coverage,” IEEE

Trans. Reliability, vol. 51, no. 4, pp. 420–426, Dec.

2002.

[5] C. Y. Huang and C. T. Lin, “Software reliability analysis

by considering fault dependency and debugging time

lag,” IEEE Trans. Reliability, vol. 55, no. 3, pp.436–450,

Sep. 2006.

[6] Roberto , S.Russo and K. S.Trivedi“Software reliability

and testing time allocation-An architecture based

approach” IEEE Trans. Reliability, vol. 36, no. 3, pp.

322–337, June. 2010.

[7] Lance fiondella and Swapna S.Gokhale,“Optimal

allocation of testing effort considering the software

architecture” IEEE Trans. Reliability, vol. 61, no. 2, pp.

580–589, June. 2012.

[8] Chao-Jung Hsu and Chin-Yu Huang,“An Adaptive

Reliability Analysis Using Path Testing for Complex

Component-Based Software Systems” IEEE Trans.

Reliability, vol. 60, no. 1, pp. 158-170, March. 2011.

