An Approach of Data Mining for Predicting the Chances of Liver Disease in Ectopic Pregnant Groups

A.S.Aneeshkumar, Research Scholar, PG and Research Department of Computer Science, Presidency College, Chennai, India.

C.Jothi Venkateswaran, Ph.D. Research supervisor & Dean, Department of Computer Science & Applications, Presidency College, Chennai, India.

ABSTRACT
Diseases are the most serious social and expensive problem faced by the society. In the past decade, world has experienced a rapid increase in various Liver diseases and Ectopic Pregnancy. In this work we propose a novel approach to evaluate the increased tendency of ectopic pregnancy and liver disease among such groups, using data mining techniques. It’s due to the modern adaptive life style and cultural changes of our society.

General Terms
Ectopic Pregnancy, Liver disorder.

Keywords
Data mining, regression analysis, hypothesis.

1. INTRODUCTION
The healthcare industry collects huge amount of health care data, which mined to discover hidden information for effective decision making. One of the major challenges facing health care organisation is the provision of quality services at affordable cost. Quality of service implies diagnosing patients correctly and administering treatments that are correctly with minimum clinical tests. They can achieve these results by employing computer based data mining and decision support system. Data mining has been around for more than two decades, its potential is being realised now and it combines statistical analysis, machine learning, algorithms, information retrieval and database technology to extract hidden patterns and relationship from large data base. Statistics suggest with current advances in early detection of diseases.

Before 19th century, the mortality rate from ectopic pregnancies exceeded 50%. But by the end of the century, the mortality rate dropped to five percent because of surgical intervention. Now a day’s concurrently increasing the reported cases of ectopic pregnancy or eutocysis, which means complication of pregnancy while the embryo implants outside the uterine cavity. Furthermore, they are dangerous for the mother, since internal haemorrhage is a life-threatening complication. Most ectopic pregnancies occur in the Fallopian tube (so-called tubal pregnancies), but implantation can also occur in the cervix, ovaries, and abdomen. An ectopic pregnancy is a potential medical emergency, and, if not treated properly, can lead to death [12].

In a normal pregnancy the fertilized egg enters the uterus and settles into the uterine lining where it has plenty of room to grow. About 1% of pregnancies is in an ectopic location with implantation not occurring inside of the womb, and of these 98% occurs in the Fallopian tubes. Now an ectopic pregnancy can be diagnosed very early using blood tests for HCG and vaginal ultrasound. Beta HCG is a very specific identification of pregnancy. A positive HCG level confirms that the patient is pregnant, but it will not provide the details about the position of the pregnancy. A vaginal ultrasound allows the doctor to locate the gestational sac of the early pregnancy. Normally the sac outside the uterus gives a positive diagnosis of ectopic in diagnosis. However, the sac cannot be seen clearly in ectopic pregnancies. Suppose the HCG level is more than 2000 mIU/ml, and the doctor cannot see a gestational sac, then the diagnosis is an ectopic case. Another blood test which can be helpful is a serum progesterone level, which is low (less than 15 ng/ml) in patients with ectopic pregnancies, as compared to normal pregnancies [13]. Lot of studies and researches going in this field, even though cannot judge the accurate reasons for increasing these problems.

Liver disorder can be identified from liver function test (LFT), in which the enzymes value may deviate from the normal pattern.

2. DATA SET
A long time collection of data in ectopic, liver dysfunction is also seen as a part of some cases. So this analysis is carried with 162 reported ectopic pregnancy cases of 13 months has been collected for this study, where 64 cases seen with abnormalities in liver function test. Normally Ectopic cases will be admitted in the bases of emergency and immediately conduct laparoscopy. Most of the obstetric experts refer for haematology and biochemistry with clotting time test, and therefore the other related study of data will not be collected by the medical institutions.

3. REGRESSION ANALYSIS
Regression analysis is used to predict the value of a dependent variable based on the value of at least one independent variable and explain the impact of changes in an independent variable on the dependent variable. The following equation gives a general approach of linear regression analysis.

\[B = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \ldots + \beta_k A_k + \epsilon \]
Here the linear relationship between A and B, is distributed by some random error ϵ have a mean of zero. $\beta_0, \beta_1, \beta_2, \ldots, \beta_k$ are the constants, use to match the input samples in statistical estimation, where β_0 is the estimate of the regression intercept and other values are considered as estimate of the regression slope or regression coefficient.

Correlation and regression are intimately related and the correlation coefficient between A and B is,

$$ r = \frac{\sum (A_i - \bar{A})(B_i - \bar{B})}{\sqrt{\sum (A_i - \bar{A})^2 \sum (B_i - \bar{B})^2}} $$

When B is regressed on A, the regression coefficient of A is,

$$ \beta_1 = \frac{\sum (A_i - \bar{A})(B_i - \bar{B})}{\sum (A_i - \bar{A})^2} $$

$$ \beta_0 = \bar{B} - \beta_1 \bar{A} $$

3.1. WEKA Tool

Waikato Environment for Knowledge Analysis (WEKA) tool, is used to analyse the performance result obtained by using linear regression analysis.

3.1.1. Training sets and Testing sets

Each model is built with a predetermined set of data and it is known as learning step or training phase, where the algorithm learning from the training sets [22]. Then another set known as testing sets, which are used to identify the effectiveness of the model.

3.1.2. k-fold cross validation

K-fold cross validation measure has been used (Delen at al., 2005). In the basic structure, it consists of dividing the data into k- subgroups. Each subgroup is tested via the rule constructed from the remaining k-1 groups. Thus the k different test results are obtained for each train- test configuration [5]. Here for our study, using ten-fold cross validation. It will help us to increase the unbiased hypothesis and evaluate the overall performance of the prediction model.

Table 2 shows the evaluation of predictive model for the training data set and repeated testing data set. Table 3 represents the achieved result after the application of ten-fold cross validation.

Where linear regression model is,

$$ liver = 0.277 \times ectopic + 1.4718 $$

![Figure 1: Positive linear relationship of data](image)

<table>
<thead>
<tr>
<th>TABLE I: Estimation of β value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
</tr>
<tr>
<td>0.2770</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE II: Predictive model for training set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time taken to build model</td>
</tr>
<tr>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>Mean absolute error</td>
</tr>
<tr>
<td>Root mean squared error</td>
</tr>
<tr>
<td>Relative absolute error</td>
</tr>
<tr>
<td>Root relative squared error</td>
</tr>
</tbody>
</table>
TABLE III: Predictive model of 10-fold cross validation

<table>
<thead>
<tr>
<th>Time taken to build model</th>
<th>0 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient</td>
<td>0.4651</td>
</tr>
<tr>
<td>Mean absolute error</td>
<td>1.5966</td>
</tr>
<tr>
<td>Root mean squared error</td>
<td>2.0957</td>
</tr>
<tr>
<td>Relative absolute error</td>
<td>76.4247%</td>
</tr>
<tr>
<td>Root relative squared error</td>
<td>83.4599%</td>
</tr>
</tbody>
</table>

3.2. Testing Differences between the Proportions

Z test is one of the major methods used in statistics for analysing the proportions between two data sets.

\[Z = \frac{p_1 - p_2 - p_3 - \ldots - p_k}{S.E.} \]

Where, \(S.E. = PQ(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \ldots + \frac{1}{n_k}) \)

\[P = \frac{n_1p_1 + n_2p_2 + n_3p_3 + \ldots + n_kp_k}{n_1 + n_2 + n_3 + \ldots + n_k} \]

\[Q = 1 - P \]

3.3. Significance Test for Correlations

It is used to determine whether a specific predictor is significant or not. A hypothesis test, known as t-test is defined as,

\[t = \frac{r}{\sqrt{1 - r^2}} \]

Where, degree of freedom (df) = 11

3.4. Goodness of Fitting the Model

In any statistical model analysis, the fitness of an observation set is explained by the goodness of its fit. By analysing the residuals, a majority of the tests for goodness of fit of a model are carried out[7]. The Chi-Square (\(\chi^2\)) test defines as,

\[\chi^2 = \sum \left(\frac{(O_{ij} - E_{ij})^2}{E_{ij}} \right) \]

Where, \(O_i\) denotes observed frequency of the joined event and \(E_i\) is expected frequency of the joined event.

4. RESULTS AND DISCUSSIONS

Implementation of these statistical methods, in the collected 164 ectopic and identified 64 liver disordered cases within that, gives a relation of positive linear regression from Figure 1. According to the table 1, we can see the estimate of the regression intercept, \(\beta_0 = 1.4713\) and the regression slope value is 0.2770.

In linear regression analysis, with a total of training sets and another total of testing sets gives the result of correlation coefficient and other related error rates in Table 2. After apply the ten-fold cross validation, the result of the predictive model is shown in Table 3, where the positive value of the correlation decreased and simultaneously the error rates also increased. In both of these cases the time taken to build the model is 0 seconds.

Table 4 shows the difference between the proportions of both datasets for 13 months, where the standard error is 0.577 and the proportion is 8.7487. The significance test gives the value of 1.7419 and therefore the null hypothesis is rejected. Finally, in addition to that the chi-square used to assess the goodness of fit of the model. Here the degree of freedom is 12. For 1 df the chi-square value needed to reject the hypothesis at the 0.001 significance level is 10.828. The computed value is 668.9526 and hence the hypothesis is strongly rejected for this group of data.

5. CONCLUSION AND FURTHER STUDIES

The prediction of Liver disease from ectopic pregnancy is a very difficult job and the relation between both of these is not that much analysed or studied by the experts of medical fields, because the reason of ectopic may vary according to the cases. So it’s peculiar to judge the correct reason behind it and liver disease is seen in some of them. But in the modern society the reported cases have a linear increment and a correlation. In future we will extend our work to identify the factors affecting the increased cases in recent time with the help of theory of evidence and fuzzy logic.
REFERENCES

[5] Asha.T, Dr.S. Natarajan, Dr.K.N.B.Murthy, “A Data Mining Approach to the Diagnosis of Tuberculosis by Cascading Clustering and Classification”; AIT, 2011

[22] Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, Published by Elsevier, second edition – 2006.