
Special Issue of International Journal of Computer Applications (0975 – 8887) 

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012 

 

12 

An Optimal Job Scheduling Algorithm in  
Computational Grids 

 
Ramya R 

Student 
Department of Computer Science and Engineering                

B.S Abdur Rahman University, Chennai. 

 

Shalini Thomas 
Assistant Professor 

Department of Computer Science and Engineering 
B.S Abdur Rahman University, Chennai. 

 

ABSTRACT 

Grid computing is an emerging technology that involves 

coordinating and sharing of resources to carry out complex 

computational problems. Resource management and 

scheduling plays a crucial role in achieving high utilization of 

resources in grid computing environments. Due to 

heterogeneity of resources, scheduling an application is 

significantly complicated and challenging task in grid system. 

Most of the researches in this area are mainly focused on to 

improve the performance of the grid system. To achieve the 

performance in grid environment, many Job scheduling 

algorithms are implemented. Existing approaches of Grid 

scheduling doesn‟t give much emphasis on the performance of 

a Grid scheduler. This paper introduces an algorithm called 

Optimized Hierarchical Load Balancing Algorithm (OHLBA) 

for Job scheduling and Load Balancing. The proposed method 

is to dynamically create an optimal schedule to complete the 

jobs within minimum makespan. The main contributions are 

to balance the system load and minimize the makespan of 

jobs. Our proposed approach uses a Grid simulation toolkit 

(GridSim) to analyze the performance of OHLBA algorithm 

with other algorithms in terms of makespan and 

efficiency.Experimental results show the proposed 

algorithmcan perform better in a Grid environment. 

General Terms 

Algorithms, Performances, Experimentation 

Keywords 

Grid Computing, Job Scheduling, Load Balancing, 

Computational Grids, Resource Management. 

1. INTRODUCTION 
Grid computing is emerging as a new paradigm for solving 

complex scientific and engineering problems. Basically, it is a 

form of distributed computing that enables the users to share 

the widely distributed, heterogeneous resources connected 

through the network to carry out their complex computational 

tasks [4]. A computational grid is a hardware and software 

infrastructure that provides dependable, consistent, pervasive, 

and inexpensive access to high-end computational capabilities 

[1].There are many issues in using computational grid. How 

to appropriately and efficiently assign resources to tasks, 

generally called job scheduling, is one of the important issues. 

„Scheduling‟ is “the processes of ordering tasks on compute 

resources and ordering communication between tasks” [2]. 

The main purpose of job scheduling is to shorten the job 

completion time and enhance the system throughput. A grid 

scheduling system should take the various characteristics of 

grid applications and resources into account. In a grid 

environment, the resource providersand tasks are all changing 

constantly, so the traditional scheduling algorithms, e.g. 

„„First Come, First Serve‟‟ may not be suitable for a dynamic 

grid system. It is very important to assign appropriate 

resources to tasks. Through a good scheduling method, the 

system can perform better and applications can avoid 

unnecessary delays. Various algorithms [ 4,5,6] are proposed 

to schedule jobs in grid environments. Although many 

proposed scheduling algorithms proved that they are suitable 

for a dynamic environment, only little work has been done on 

the aspect of job scheduling considering the real time 

characteristics of grid resources.  

Load balance is also an important issue in grid environment. 

The main purpose of load balancing is to balance the load of 

each resource in order to enhance the resource utilization and 

increase the system throughput. For a conventional distributed 

system, many load balancing algorithms [6–9] have been 

proposed. But they may not be suitable for grid environments 

due to the different characteristics in grids. Numbers of load 

balancing algorithmshave been proposed for grid 

environments. Some take the grid characteristics into account 

but do not follow changes in the system status. Others may set 

a fixed balance threshold for controlling the load situation of 

the whole grid system. Hence, they might not be suitable in a 

dynamic grid environment. Based on this opportunity for 

improvement, we propose a new framework and scheduling 

algorithm to balance the load of a grid system with an 

adaptive balance threshold while trying to minimize the 

makespan of job execution. We assign a job to a resource 

depending on the resource‟s characteristics while 

simultaneously considering the load of the cluster. Local and 

global updates allow the refreshment of the new status of 

resources in the grid system. A more appropriate scheduling is 

achieved via these updates.  

This paper is organized as follows. Section 2 is an overview 

of related work about job scheduling in Grid environment. 

Our proposed grid framework and job scheduling algorithm 

are presented in Section 3. Section 4 contains description of 

Optimized Hierarchical Load Balancing Algorithm. Section 5 

containsexperiment parameters, set-up, and results.Finally, 

Section 6 and 7givesConclusion and References. 

2. RELATED WORK 
In the literature, many scheduling algorithms have been 

proposed. Most of them can be applied to the grid 

environment with suitable modifications. 

 First Come First Served scheduling algorithm (FCFS) 

In this algorithm, jobs are executed according to the order of 

job arriving time. The next job will be executed in turn. The 

FCFS algorithm [4] may induce a „„convoy effect‟‟. The 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012 

 

13 

convoy effect happens when there is a job with a large amount 

of workload in the job queue. When this occurs, all 

thejobsqueued behind it must wait a long time for the long job 

to finish. 

 Round Robin scheduling algorithm (RR) 

The RR algorithm [5] mainly focuses on the fairness problem. 

The RR algorithm defines a ring as its queue and also defines 

a fixed time quantum. Each job can be executed only within 

this quantum, and in turn. If the job cannot be completed in 

one quantum, it will return to the queue and wait for the next 

round. The major advantage of RR algorithm is that jobs are 

executed in turn and do not need to wait for the previous job 

completion. Therefore, it does not suffer from a starvation 

problem. However, if the job queue is fully loaded or 

workload is heavy, it will take a lot of time to complete all the 

jobs. Furthermore, a suitable time quantum is difficult to 

decide. 

 Min–min and max–min algorithm 

The Min–min scheduling algorithm [3] sets the jobs that can 

be completed earliest with the highest priority. Each job will 

always be assigned to the resource that can complete it 

earliest. Similar to Min–min algorithm, Max–min algorithm 

[3] sets the highest priority to the job with the maximum 

earliest completion time. The main idea of Max–min 

algorithm is to overlap long running tasks with short-running 

tasks.Max–min can be used in cases where there are many 

shorter tasks than there are longer tasks. For example, if there 

is only one long task, Min–min will first execute many short 

jobs concurrently, and then execute the long task. Max–min 

will execute short jobsconcurrently with the long job. 

 Sufferage scheduling algorithm 

The idea behind the sufferage scheduling algorithm is that 

better mapping can be generated by assigning a machine to a 

task that would „„suffer‟‟ most in terms of expected 

completion time if that machine is not assigned to it. In this 

algorithm, each job is assigned according to its sufferage 

value. The sufferage value is defined as the difference 

between its second earliest completion time and its earliest 

completion time (two completion times with different 

resources). The sufferage algorithm will pick a job in an 

arbitrary order and assign it to the resource that gives the 

earliest completion time. If another job has the earliest 

completion time with same resource, the scheduler will 

compare their sufferage values and choose the larger one. 

However, this algorithm mayhave the starvation problem. 

 Most Fit Task scheduling algorithm (MFTF) 

The MFTF algorithm [7] mainly attempts to discover the 

fitness between tasks and resources for user. It assigns 

resources to tasks according to a fitness value, and the value is 

calculated as follows: 

Fitness(i, j) = 10000/(1 + |Wi/Sj− Ei|)          (1) 

where Wi is the workload of the ith task, Sj is the CPU speed 

ofthe jth node, and Ei is the expected time of the ith task. Wi/Sj 

isthe expected execution time using this node. 

|Wi/Sj− Ei| is thedifference of the estimated execution time 

and the expected taskexecution time. Ei is determined by the 

user or estimated by themachine. How to set Ei is calculated 

by (2). 

Ei= A + n × S (2) 

where A is the average response time;n is a non-negative real 

number and S is the standard deviation oftask response 

time.When the estimated execution time is closer to Ei, it 

meansthat the node is more suitable for the task. However, the 

MFTF scheduling algorithm has some problems for 

estimating. It does not consider the resource utilization, and 

the estimated function is an ideal method. Therefore, incorrect 

scheduling may occur in the real environment. 

 ACO algorithms in job scheduling 

Ant Colony Optimization (ACO) [8] was used for solving the 

scheduling problem in grids in recent years. Xu et al.proposed 

a simple grid simulation architecture and modified the basic 

ant algorithm for job scheduling in grid. Thescheduling 

algorithm proposed in the paper needs some information such 

as the number of CPUs, Million Instructions Per Second 

(MIPS) of every CPU for job scheduling. A resource must 

submit the information mentioned above to the resource 

monitor.The pheromone for calculating resource suitability 

will be initialized as: 

𝜏𝑗 0 =  𝑚 ∗ 𝑝 + 𝑐/𝑠 (3) 

Wheresj(0) means the initial pheromone of the path between 

the resource monitor and resource j, m is the number of CPUs, 

p is the MIPS of one CPU, c is the size of parameters, and sj is 

the transfer time from resource j to the resource monitor. 

Encourage-factor and punish-factor are added into the original 

ant algorithm. When resource j completes a job successfully, 

the pheromone will be updated a 

τjnew =  ρ. τjold +  Ce ∗ k (4) 

𝛕j
new is the pheromone after updating, 𝛕j

old is the pheromone 

before updating, q is the permanence of pheromone, Ce isthe 

encourage factor, and K is the computing and transferring 

quality of the job.In contrast, when resource j does not 

complete the job, the pheromone will be updated by a punish-

factor as: 

τjnew =  ρ. τjold +  Cp ∗ k (5) 

whereCp is the punish-factor. 

Encourage-factor and punish-factor are used to adjust the 

pheromone of every resource and select the better resource 

tosubmit jobs. However the load of the better resources will 

be more than others and it will decrease the performance of 

jobscheduling. 

3. PROPOSED SYSTEM MODEL 

3.1 SystemArchitecture 
The System Architecture is composed of four main 

components:Portal, Information Server, Scheduler, and 

clusters withgrid resources, as shown in Fig.1.The Portal 

provides an interface for users to submit jobs. TheInformation 

Server discovers resource nodes registered with thesystem, 

and records the information of the resource such as 

CPUspeed, idle CPU percentage, memory utilization and 

average load ofeach cluster, etc. The job scheduler accepts the 

job from the portaland uses the OHLBA with theinformation 

from Information Serverto choose the appropriate cluster and 

compare its load with thesystem. Then, it selects the resource 

with the strongest computingpower in the cluster to execute 

the submitted job. After the job isfinished, the result and the 

new status of the resource will be sentback to the Information 

Server for another scheduling. 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012 

 

14 

 
Fig 1: System Architecture 

 

3.2 Proposed Job Scheduling Algorithm 

 

Optimized Hierarchical Load Balancing Algorithm 

Input: Given Job 

Output: Computational result with less makespan. 

Step 1: User submits jobs to portal. 

Step 2: Scheduler Initialize all the parameters in table1. 

Step 3: Scheduler obtains information such as ACP, ALC, 

AL,ADTH from GIS. 

Step 4: While job is not empty do 

  Select the job 

               Sort the ACL of clusters  

 if ACL <ADTH then 

 cluster UNDERLOADED 

    Allocate job to resource 

 else 

 cluster OVERLOADED  

 Select the highest ACPi for remaining clusters  

 Assign job to resource with highest ACPi 

            Local Update 

 end if 

  repeat step 4 

end While 

Step 5:  If all jobs are executed then  

  Global Update 

             else 

 Select a job 

            end if 

3.3 Phases of Job Scheduling Algorithm 
„Scheduling‟ is the process of ordering taskson compute 

resources and ordering communication between tasks known 

as the allocation of computation and communication over 

time.There are three main phases of Grid scheduling. Phase 

one is resource discovery, which provides a list of available 

resources. Phase two is resource allocation and load analysis, 

which involves the selection of feasible resources and the 

mappingof jobs to the resources. The third phase includes job 

execution. 

3.3.1 Resource Discovery 
Resource discovery is the initial phase of any scheduling 

algorithm. The resource discovery algorithm is shown in fig 2. 

This phase is carried out in two steps  

Step 1: Resource Listing  

The list of machines or resource to which the user has access 

to is listed from the resource pool which was created 

previously. 

Step 2: Resource Filtering 

Given a set of resources to which a user has access and the 

resources are filtered according to Average Computation 

Power of each clusters. 

Algorithm for Resource Discovery Phase 

 
Fig 2: Resource Discovery Algorithm 

Input: Client Job Ji , load, time limit, cost limit. Cluster of 

Resource Ri 

1. Discover the available resources from inter domain and 

intra domain  according to various load, capacity, PE 

and bandwidth 

2. Find the Average Computational Power of each cluster 

and select the resource according to ACP value. 

For every cluster Ci 

 Calculate Average Computational Power 

(ACP) of cluster 

ACP =
Total  capacity ∗Available  capacity

no .of  resources
                     (6)   

 Sort the Cluster based on ACP value. 

 Filter the resources from cluster according to 

the highest ACP and store it in list RL 

 Select the resources with highest ACP and add 

it in the list RL 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012 

 

15 

3.3.2 Load Analysis 
In this module the Average Load index of each resource and 

clusters are calculated. The average load of each resource is 

estimated by the weighted sum of squares method. To 

calculate the weighted sum of squares method, we use three 

parameters namely network utilization, memory utilization, 

and idle CPU percentage. The Load balancing algorithm is 

shown in fig 3. 

Algorithm for Load Analysis 

 
   

Fig 3:  Load Analysis Algorithm 

3.3.3 Job Submission 
Set an adaptive threshold value and check whether the 

Average computation power of cluster is less than threshold. 

If the value is less, then the cluster is underload. Scheduler 

submits the job to the cluster which is in underload. The job 

submission algorithm is shown in fig 4. 

Algorithm for Job Submission 

 

Fig 4: Job Submission Algorithm 

4. OPTIMIZED HIERARCHICAL LOAD 

BALANCING ALGORITHM 
Optimized Hierarchical Load Balancing Algorithm mainly 

focuses on the computational grid environment. When the 

scheduler receives a job submitted by a user, it will transfer a 

request to the Information Server in order to obtain the 

necessary information such as the idle CPU percentage of 

each resource, average load of each cluster and average load 

of the system. Then the scheduler chooses a cluster which has 

the fastest average computing power (ACPi). The average 

computing power of the cluster is defined in equation(6). 

When a job is to be assigned to a cluster with the highest 

ACPi, the load of the selected cluster will be checked first to 

see if it is already overloaded.After the scheduler selects the 

cluster which has the fastest ACP, it will compare the average 

load of the chosen cluster with the average load of the system. 

The average load of the cluster is defined by the average load 

of each resource in cluster i.To calculate the average load of 

each resource in OHLBA, we consider three load attributes, 

CPU utilization of the resource (CPUk), the memory 

utilization of the resource (MUk) and the utilization of 

network (NUk). The average load of each cluster i (ALCi) is 

defined in equation(7). Then calculate the average Load. The 

average load of the system (AL) is defined in equation(8). We 

set the average load of each cluster i, ALCi, to be less than the 

balance threshold of the system. 

 
 

Fig. 5The process in OHLBA. 

 

Begin 

1. Assign Adaptive Threshold ADTH as AL 

 ADTH =AL 

2. Check whether the cluster is overloaded or 

underloaded 

 if(ALCi<ADTH) { 

 Cluster underloaded 

Assign the job to the cluster 

    } 

else{ 

Cluster overloaded 

Choose new cluster 

3. Calculate the job completion time for the jobs 

submitted to the grid. 

End 

Begin 

Get the resource RL in the queue 

For all (selected resources Ri in the cluster) 

1. Find the average load of each resources (ALC) 

from RL. 

ALC =
√( α∗CPUk ² + β∗MUk ² +(γ∗NUk ²))

total  no .of  resources
              (7) 

Where, 

CPUk-- CPU Utilization 

MUk-- Memory Utilization 

NUk        ---        Network Utilization 

α, β, γ  -- Weighted values 

2. Find the overall load of system(AL) 

AL =
ALC

total  no .of  clusters
                                        (8) 

End 

 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

The International Conference on Communication, Computing and Information Technology (ICCCMIT) 2012 

 

16 

The process of OHLBA algorithm is shown in Fig 5. In our 

algorithm, when scheduler receives a job and obtains 

necessary information from the job, we will sort clusters by 

their average loads. If the average load of cluster (ALC) 

exceeds the balance threshold (ADTH), it means that the 

cluster is overloaded. We sort the clusters which are 

underloaded and select the cluster with the highest ACP 

within those clusters. After selecting the suitable cluster, we 

select the resource with the best computing power in this 

cluster and assign the job. Local update and global update are 

also performed in OHLBA to ensure that we can get the latest 

status of resources. 

5. SIMULATION AND RESULT 

ANALYSIS 
The simulation was carried out on the excellent grid 

simulation toolkit GridSimToolKit 5.0 [10] which allows 

modeling and simulation of entities in grid computing 

systems-users, applications, resources, and resource load 

balancers for design and evaluation of load balancing 

algorithms. A heterogeneous grid environment by using 

various resource specifications was built. It proposes the 

method of creating a user job and different types of 

heterogeneous resources. The resources differ in their 

operating system type, CPU speed, RAM memory, MIPS 

rating.This section analyzes the performance of the scheduling 

strategy. The parameters used for simulation is shown in 

Table1. 

Table1:Simulation parameters of our proposed algorithm 

 

Parameter Value 

 

Number of tasks 2000 

Size of task (MI)    300,000–500,000 

Number of nodes of a cluster   10 

Computing power of resource node (MIPS) 500–5000 

Number of clusters 10 

Size of memory (MB) 500–1000 

Baud rate (bps) 500–1000 

User submitted number of jobs 50 

5.1 Results of different scheduling 

algorithms 
The results of different Scheduling algorithms focuses on the 

makespan of jobs.Wecompare the result of our algorithm 

OHLBA with MFTF algorithm andACOalgorithm. 

 
Fig 6.Makespan of each scheduling algorithms 

According to Fig. 6, we can observe that OHLBA has 

betterperformance than other algorithms. We assign jobs to 

the resourcedepending on the status of the resource. A cluster 

with highestaverage computing power means that it is the 

suitable cluster forthe resource. The average computing power 

of each cluster will be calculated according to the newest 

status of resources which isupdated by local updateand global 

update. Therefore, OHLBA canselect the suitableresources for 

jobs and reduce the makespan. 

6. CONCLUSION 
Load balancing is one of the main issues in the grid 

environment. Recent researches have proved that 

loadbalancing on computational grids is best solved by 

heuristic approach. Hence, an Optimized Hierarchical Load 

Balancingalgorithm is developed to allocate tasks to proper 

resources. In order to verify the performance of 

proposedalgorithm, the simulation is performed. The results 

of the experiments are also presented and the strength of 

thealgorithm is investigated. The simulation result concludes 

that the proposed algorithm enhances performance interms of 

resource utilization. 

7. REFERENCES 
[1] Y. H. Lee, S. Leu and R. S. Chang, “Improving job 

scheduling algorithms in a grid environment”, Future 

generation computer systems, (2011)May. 

[2] H. Shan, L. Oliker, W. Smith and R. Biswas, 

“Scheduling in Heterogeneous Grid Environments: The 

Effects of Data Migration”, (2004). 

[3] Ruay-Shiung Chang, Chih-Yuan Lin, Chun-Fu Lin, “An 

Adaptive Scoring Job Scheduling algorithm for grid 

computing”, Future Generation Computer Systems 207 

(2012) 79–89. 

[4] Ungurean, “Job Scheduling Algorithm based on 

Dynamic Management of Resources Provided by Grid 

Computing Systems”, Electronics and Electrical 

engineering, vol. 103, no. 7, (2010). 

[5] Sheng-De Wang, I-Tar Hsu, Zheng-Yi Huang, “Dynamic 

scheduling methods forcomputational grid 

environments”, International Conference on Parallel 

andDistributed Systems 1 (2005) 22–28. 

[6] P.K. Suri, Singh Manpreet, “An efficient decentralized 

load balancing algorithm for grid”, 2010 IEEE 2nd 

International Advance Computing Conference, IACC, 

2010, pp. 10–13. 

[7] S. Sharma, S. Singh and M. Sharma, “Performance 

Analysis of Load Balancing Algorithms”, 

WorldAcademy of Science, Engineering and 

Technology, vol. 38, (2008), pp. 269-272.  

[8] R. S. Chang, C. F. lin and J. J. Chen, “Selecting the most 

fitting resource for task execution”, Future Generation 

Computer Systems, vol. 27, (2011), pp. 227-231. 

[9] Ruay-Shiung Chang, Jih-Sheng Chang, Po-Sheng Lin, 

“An ant algorithm forbalanced job scheduling in grids”, 

Future Generation Computer Systems 25 (1)(2009) 20–

27..  

[10] R. Buyya and M. M. Murshed, “Gridsim: a toolkit for the 

modeling and simulation of distributed resource 

management and scheduling for grid computing”, 

Concurrency and Computation: Practice and Experience, 

14:1175–1220, 2002. 


