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ABSTRACT 
In this paper, we discuss Bianchi type V cosmological model 

filled with viscous fluid in the presence of cosmological term 

Λ. The viscous coefficient of bulk viscous fluid is assumed to 

be a power function of mass density, whereas coefficient of 

shear viscosity is considered proportional to scale of expansion 

in the model. Exact solutions of the field equations are obtained 

by using scalar of expansion proportional to shear scalar 

  which leads to a relation between metric potential 
rBA where r is constant. Some physical and geometrical 

properties of the model are also discussed. 

1. INTRODUCTION 
The cosmological models which   are spatially homogenous and 

anisotropic play significant roles in the description of the 

universe at its early stages of evolution. Bianchi I-IX spaces are 

very useful to constructing special homogeneous cosmological 

models. (The importance of Bianchi type V model is due to the 

fact that the space of constant negative curvature is contained in 

it as a special case). These models can be used to analyze 

aspects of the physical universe which pertains or which may 

be affected by anisotropy in the rate of expansion, for example, 

the cosmic microwave background radiation, nucleosynthesis in 

the early universe and the question of isotropization of the 

universe itself (Mac Callum, [1]). Spatially homogeneous 

cosmologies also play an important role in the attempt to 

understand the structure and the properties of the space of all 

cosmological solutions of Einstein’s field equations. 

Most cosmological models assume that the mater in the 

universe can be described by dust (a pressure less distribution) 

or at the early stages of universe viscous effects do play a role 

(Israel and Vardalas [2], Kilmek [3], Weinberg [4]). For 

example, the existence of bulk viscosity is equivalent to slow 

process of restoring equilibrium states (Landau and Lipchitz 

[5]). The observed physical phenomena such as the large 

entropy per baryon and remarkable degree of isotropy of the 

cosmic microwave background radiation suggest analysis of 

dissipative effects in cosmology. 

In the modern cosmological theories, the dynamic cosmological 

term Λ(t) remains a focal point of interest as it solves the 

cosmological constant problem in a natural way. There is 

significant observational evidence towards identifying 

Einstein’s cosmological constant Λ or a component of material 

content of the universe that varies slowly with time and space 

and so acts like Λ. Recent cosmological observations by the 

High-z Supernova Team and the Supernova Cosmological 

Project [6–12] suggest the existence of a positive cosmological 

constant Λ with magnitude Λ 
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To consider more realistic models one must take into account 

viscosity mechanisms; and, indeed, viscosity mechanisms has 

attracted the attention of many researchers. Misner [13, 14] 

suggested the strong dissipation due to neutrino viscosity may 

considerably reduce the anisotropy of the black body radiation. 

Weinberg [15, 16] suggested that a viscosity mechanism in 

cosmology can explain the unusual high entropy per baryon in 

present events. Waga et al. [17], Pachel et al. [18], Guth [19], 

and Murphy [20] have shown that bulk viscosity associated 

with the grand unified theory Phase transition (see Langackar in 

[21]) may lead to an inflationary scenario. 

A uniform cosmological model filled with fluid under pressure 

and with viscosity has been developed by Murphy [20]. A 

solution that we have found exhibits an interesting feature 

where the big bang type singularity appears in the infinite past. 

Exact solutions for isotropic homogeneous cosmology for open, 

closed and flat universes have been found by Santos et al. [22] 

with the bulk viscosity being a power function of energy 

density. The effect of bulk viscosity on cosmological evolution 

has been investigated by a number of authors in the context of 

general theory of relativity [23–31]. The nature of cosmological 

solution for homogenous cosmological model was investigated 

by Belinsky et al. [32] and shown that viscosity cannot remove 

the cosmological singularity but result in a qualitatively new 

behaviour of the solution near singularity. Huang [33] has 

studied Bianchi type models with bulk viscosity as a power 

function of energy density and when the universe is filled with 

stiff matter. The effect of bulk viscosity, with a time varying 

bulk viscous coefficient, on the evolution of isotropic FRW 

models in the context of open thermodynamics system was 

studied by Desikan [34]. Ray et al. [35] have studied 

anisotropic-charged fluid sphere with varying cosmological 

constant. Bianchi type I cosmological models with 

cosmological term Λ was studied by Singh et al. [36], 

Chakravarty and Biswas [37] and Belinchon [38]. 

Bulk viscous models have prime roles in getting inflationary 

phases of the universe [39–45]. Bulk viscosity driven inflation 

is primarily due to the negative bulk viscous pressure giving 

rise to a total negative effective pressure which may overcome 

the pressure due to the usual gravity of matter distribution in the 

universe and provide an impetus to drive it apart. Bulk viscosity 

is associated with the GUT phase transition and string creation. 

Thus, we should consider the presence of a material distribution 

other than a perfect fluid to have realistic cosmological models 

(Gron, [46]) for a review on cosmological models with bulk 

viscosity. 
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The effect of bulk viscosity on cosmological evolution has been 

investigated by a number of authors in the framework of 

general relativity (Pavon [47], Padmanabhan and Chitre [48], 

Johri and Sudarshan [49], Maartens [50] , Zimdahl [51], Santos 

et al. [52], Pradhan et al. [53], Kalyani and Singh [54], Singh et 

al. [55], Pradhan et al. [56–58]) This motivates to study 

cosmological bulk viscous fluid model. Banerjee and Sanyal 

[59] have considered Bianchi Type V cosmologies with 

viscosity and heat flow. It has also been shown that it is 

possible for dissipative Bianchi type V universe model not to be 

in thermal equilibrium in their early stages. Coley [60] have 

investigated Bianchi Type V spatially homogenous with perfect 

fluid cosmological model which contains both viscosity and 

heat flow. Recently, Kandalkar [61] have discussed the problem 

with cosmological constant in the presence of viscous fluid in 

evolution of the Kantowski - Sachs cosmological model. 

Motivated by the situation discussed above, in this paper we 

discuss the problem with cosmological constant in the presence 

of viscous fluid in evolution of Bianchi type V cosmological 

model.  

2. METRIC AND THE FIELD 

EQUATIONS  
  

We consider metric in the form, 

     22222222 dzdyeBdxAdtds x  (1) 

The Einstein field equations (in gravitational units    

c = 1, G = 1) are 
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Here    is the energy density, p is pressure and   and   are 

coefficients of shear and bulk viscosity respectively. The 

semicolon (;) indicates covariant differentiation. The shear and 

bulk viscosities are positively definite i.e. ;0,0    and 

may be either constant or functions of time or energy as 
  ba  ,  

where a and b are constants, iu  is the flow vector satisfying the 

relation,  

                  1ji

ji uug                                          (4) 

We choose the co-ordinates to be commoving so that 

                1,0 4321  uuuu                          (5) 

The Einstein field equations (2) for the line element (1) has 

been set up as 
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where a dot (.) over a variable denotes ordinary differentiation 

with respect to time t. 

 

3. SOLUTION OF THE FIELD 

EQUATIONS 
 
Equations (6) – (8) are three independent equations in seven 

unknown A, B, andp  ,,,  

First, we assume a relation in metric potential as, 

                             rBA                                         (9) 

Second, we assume that coefficient of shear viscosity is 

proportional to the scale of expansion i.e. 

                                                             (10) where r is a 

real number and   is the scalar of expansion given by,  

                           i

ju;                                   (11) From 

equations (7) and (8), we get, 
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From equation (10), we obtain, 
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where l is the constant of proportionality.   

Equation (12) together with (9) and (13) leads to, 

         02  BBB                                               (14) 

which can be rewritten as, 
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From (15), we obtain, 
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Integrating equation (18), we get 
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From (9), we obtain, 
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The metric (1) reduces to, 
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The pressure and density for the model (21) are given by, 
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We assume that the fluid obeys an equation of state of the form, 

                 p                                                 (24) 

where 10  is constant.  

Bulk viscosity is assumed to be a simple power function of the 

energy density, 

                 nt  0                                         (25) 

where 0 and n are constants. 

On using equation (25) in (22), we obtain the following relation 

for pressure, 
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If n = 1, equation (25) may correspond to a radiative fluid. 

However, more realistic models (See Santos in [22] are based 

on n lying in the region .
2
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Model I: Solution for 
0   

 

When n = 0 equation (25) reduces to 
0  = constant. Hence, 

in this case equation (26) with the use of (23) and (24) leads to, 
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Eliminating )(t between equations (23) and (25), leads to 
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The cosmic matter density parameter 

m  and cosmic vacuum 

– energy density parameter 
 are given by 
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Model II: Solution for  0  

 

When n = 1, equation (25) reduces to  0 . Hence in this 

case equation (26) with the use of (23) and (24) leads to  
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Some physical aspects of the models 
  

The spatial volume V, Hubble parameter H, expansion factor 

 , shear   and deceleration parameter q of the fluid for the 

metric (21) leads to, 

             xs ectsrRV 2

1

3 2                (33) 

      
 cts

H



3

1                                                (34) 

       
 cts 


1

                                                    (35) 

       
    222

2
2

23

1

ctrs

r




                         (36) 

      
 23

1






r

r



                                              (37) 



International Conference on Benchmarks in Engineering Science and Technology ICBEST 2012 

Proceedings published by International Journal of Computer Applications® (IJCA) 

4 

       124  lq                                                    (38)  The 

expansion factor   decreases as a function of t and approaches 

zero. Also  and p approaches to zero as t .  

4. PARTICULAR MODELS 
If we set r = 2, the geometry of space time (21) reduces to, 
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The pressure and density for model (39) are given by 
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Case I: Solution for 
0   

               
When n = 0 equation (25) reduces to constant0  . 

Hence, in this case equation (27) leads to, 
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Case II: Solution for  0  

               

When n = 1, equation (25) reduces to  0 . Hence in 

this case equation (31) and (32) leads to, 
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Some physical aspects of the models 

The expansion factor   and the shear   of the fluid for the 

model(39) leads to,   

                 
 cts 


1

                                        (48) 

                 
 cts 


34

1
                              (49) 

                
34

1




                                              (50) 

Note that the expansion factor   is a decreasing function of t. 

Since 0lim 
 


t

 isotropy is not approached for large values 

of t.

  

5. SPECIAL MODELS 

If we set r = 2 and 

32

1
l  equation (18) leads to, 

               dtdBB                                                 (51) 

This on integration gives, 

               )(22 ctB                                          (52)                                  

where c is the constant of integration. Hence, we obtain 

             )(22 ctBA                                     (53) 

The geometry of space time (21) reduces to, 

               

 222

22222 22

dzdye

ctdxctdtds

x 

        (54) 

The pressure and density for the model (54) are given by, 
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Case I: Solution for 0   
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Case II: Solution for  0    
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Some physical aspects of the models 

The expansion factor   and the shear   of the fluid for the 

model (54) leads to,   

                   
 ct 


2

                                        (63) 

                  
 ct 


32

1
                               (64) 

                 
34

1




                                             (65) 

 

6. CONCLUSION 
In this paper, we discuss Bianchi type V models with viscous 

fluid in the presence of cosmological term . We have 

assumed that the fluid obeys an equation of state of the form 
p

.Also, the viscous coefficient of bulk viscous fluid is 

assumed to be a power function of mass density. It is observed 

that the expansion factor   is a decreasing function of t and 

approaches to zero as t . Also from equation (23), the 

energy density


approaches zero as t . Since      

constantlim 
 


t , the model is not isotropic for large values 

of t. The behavior of the universe in models will be determined 

by the cosmological term . It is noticed that  is positive. 

Also, we observe that for n = 0, the cosmic matter density 

parameter m
 and vacuum energy density parameter 


exist which approaches to zero for 0t but for n = 1 

m
 and  does not exist. 

If we set r = 2, it is observed that density 


and pressure p 

approaches to zero as t . Thus, we have obtained a 

physically relevant decay law for the cosmological constant 

without considering an assumption for variation. 

In special models, we observed that the density 


and pressure 

p are valid for t > 0. 
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