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ABSTRACT 
In this paper method of initial functions is used for the 

study of composite laminated beams. The distribution of 

bending and shear stresses in composite laminated beams 

are different from beams of small thickness. The 

equations of two dimensional elasticity have been used 

for deriving governing equations. The order of the 

derived equations depends on the stage at which the 

series representing the stresses and displacements are 

truncated. No assumptions regarding physical behavior of 

beams are made. The beam theories which are based on 

assumptions are of a practical utility in the case of beams 

of moderate thickness. However in the case of thick or 

laminated beams it becomes difficult to obtain useful 

results using these theories.  

1. INTRODUCTION  

Composite laminated beams are widely used in many 

structures, because this concept is very suitable for the 

development of lightweight structures. Beams that are 

built of more than one material are called composite 

beams. Examples are bimetallic beams, sandwich beams, 

laminated beams and reinforced concrete beams. It is 

difficult to analyze the laminated beams by the same 

bending theory we used for ordinary beams. In the 

present paper equations governing the flexure of 

composite laminated beams are derived without making 

any assumption regarding the physical behavior of 

beams. The method of initial functions (MIF) has been 

used for the purpose of deriving the equations. The 

method of initial function (MIF) is an analytical method 

of elasticity theory. The method makes it possible to 

obtain exact solutions of different types of problems, i.e., 

solutions without the use of hypotheses about the 

character of stress and strain.  

According to this method, the basic desired functions are 

the displacements and stresses. 

Method of initial functions is used for two dimensional 

elasto dynamic problems for plain stress and plain strain 

conditions [2]. And it is used for the analysis of thick 

circular plates. The governing equations are derived from 

the three-dimensional elasticity equations in cylindrical 

polar coordinates using Maclaurin series [6]. MIF has 

been applied for deriving higher order theories for 

laminated composite thick rectangular plates [5]. The 

governing differential equations of plate with arbitrary 

thickness and basic equations of three-dimensional theory 

of elasto-dynamics are formulated using MIF [8]. They 

have used MIF for the static analysis of simply supported, 

orthotropic, and laminated circular cylindrical shell of 

revolution subjected to axisymmetric load.By using the 

continuity conditions of displacements and stresses on 

each interface between adjacent layers, the state equation 

for the laminate is obtained [1]. 

In the case of laminated beams it is quite difficult to 

assume a distribution of stresses and deflection with a fair 

amount of accuracy. It requires to developed simple 

models to explain this behavior as a function of material, 

geometry and loading parameters [7]. Developed 

governing equations for composite laminated deep beams 

by using method of initial functions. The beam theory 

developed can be used for beam sections of any depth 

[3].Applied method of initial functions (MIF) for the 

analysis of orthotropic deep beams and compared the 

results with the available theory based on assumptions 

[4]. 

2. PROBLEM FORMULATION 

The laminated composite beam consists of N number of 

layers, serially numbered beginning from the bottom 

most layer. The thickness of any i
th 

layer (i = 1,………N) 

is equal to hi and its elastic constants are Ex,i , Ey,i, , Gi, 

µxy,i , and µyx,i. 

Each layer has its own local coordinates system xi and yi (i 

= 1,…….N) which is parallel to the Cartesian co-ordinate 

system x and y for the overall beam. The principal axes of 

orthotropy of each layer are parallel to the coordinate 

axes. 

The constitutive relation for the material in the i
th

  layer (i 

= 1, ……N) are : 

11, 12,x i x i yC C                  
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12, 22,y i x i yC C     (1)    

33,xy i xyC            

                 

Where σx, σy and τxy are bending, normal and shear 

stresses respectively. 

And εx  and εy are strains in x and y directions 

respectively. 

The constants C11,i  to C33,i expressed in terms of the 

elastic moduli of the material, for orthotropic material. 

The equations of equilibrium for solids ignoring the body 

forces for two dimensional cases are: 

0
xyx

x y

 
 

 
              (2)  

0
xy y

x y

  
 

 
              (3) 

For small displacements, the strain-displacement relations 

are: 

x

u

x






     

         

y

v

y






                 (4) 

xy

v u

x y


 
 
 

     

      

Where u and v are displacements in x and y directions. 

 

Local coordinate’s xi and yi for each layer lie in the same 

plane. Hence, the operators α and β and the coordinates x 

and y need not have suffix i. stresses, strain and 

displacements can be expressed as functions of the global 

coordinates and need not have subscripts. 

Eliminating σx from above equations the following 

equations are obtained, which can be written in matrix 

form as  

1, 2,

2

3, 1,

0 0 1

0 0

0 0 0

0 0

i i

i i

Gu u

C Cv v

Y Yy

C G CX X







 

    
    

     
    
    

    

     (5) 

Where, 

X = 
xy   , Y = 

y =   
' '

12 22x yC C    

11, 12,

1, 2, 3, 11,
22,22, 22,

1
; ;

i i

i i i i
ii i

C C
C C C C

C C C


   

 

Expressions for the constants C11 to C33 are given in 

Appendix. 

The equation (5) is written as: 

    iS D S
y





           (6) 

The solution of equation (6) is 

     i i
D y

iS e S 
           (7)

 

Where iS , is the vector of initial functions, as the 

value of the state vector S , at the bottom of the i-th 

layer i.e. at yi=0, (i = 1,…….N). 

Hence,  iS =  , , ,
T

i i i iu v Y X
  (8) 

If ui, vi, Yi and Xi are values of u, v, Y and X respectively, 

at the bottom plane of the i
th

 layer 

 (i =1,…… N) 

The solution of equation (7) can be written as:  

 S =   i iL S
  (9) 

The equation (9) represents the general solution of two-

dimensional problem for orthotropic materials. 

Where    i i
D y

iL e  (10) 

The transfer matrix  iL   relates the stresses and 

displacements at the bottom plane of the i
th

 layer to the 

same at any other parallel plane within the same layer (i 

=1,…..., N).  

 

It is a square matrix of the form 
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[ ]

uu uv uY uX

vu vv vY vX

i

Yu Yv YY YX

Xu Xv XY XX

L L L L

L L L L
L

L L L L

L L L L

 
 
 
 
 
  ,    (11)

 

Expending (10) in the form of a series 

       
2

2
.......

2!

i
i i i i

y
L I y D D   

               (12) 

Where, [I] is a unit matrix.  

The truncation of series (12) depend on the order of the 

beam theory desired. 

3. ANALYSIS OF THE COMPOSITE 

LAMINATED BEAMS 

In the case of a layered composite beam loaded at the top 

surface, the state of stresses and displacements at the free 

bottom surface of the beam is given by: 

 1S =  1 1, , 0, 0
T

u v
                        (13) 

Let     

 TS =  , , ,
T

T T T Tu v Y X
         (14) 

Where  uT , vT ,YT  and  XT   are the values of stresses and 

displacements at the top surface of the  

layered beam. 

 

Relating the stresses and displacements at the top surface 

of the layer to those at the bottom surface by successive 

application of the transfer matrix [Li] across each layer, 

one obtains: 

 

    1TS A S
                             (15) 

Where, 

2 2 1 12 1[ ] [ ] ..................[ ] .[ ]
N NN y h y h y hA L L L  

          
(16) 

The terms of the matrix [A] are evaluated after expanding 

the exponential in the form of a series.  

The matrix has a form: 

[ ]

uu uv uY uX

vu vv vY vX

Yu Yv YY YX

Xu Xv XY XX

A A A A

A A A A
A

A A A A

A A A A

 
 
 
 
 
               (17)

 

The equation (15) relates the boundary conditions at the 

top surface to those at the bottom surface and is useful for 

deriving governing differential equations for a layered 

beam having a particular number of layers. 

The method adopted for analyzing layered beams 

involves the determination of initial functions at the 

bottom surface of the beam by relating them through the 

matrix [A] to the stresses at the top surface.  

4. APPLICATION TO THE PROBLEM OF  

COMPOSITE LAMINATED BEAM 

HAVING TWO LAYERS 

A composite beam consists of the two layers. Therefore 

the matrix [A] becomes  

     
2 2 1 1

2 1.
y h y h

A L L
 


   (18) 

Where h1

 
and h2 are the thickness of two layers.  

The conditions at top are given by: 

   , , , 0
T

T T TS u v p 
           (19) 

Substituting the expressions (13) and (17) in the 

equations (15) we get: 

1 1 0Xu XvA u A v 
                (20) 

1 1Yu YvA u A v p  
                         (21) 

These equations are exactly satisfied by 

1 ,Xvu A 
                             (22) 

1 Xuv A    (23)
 

Where φ, is an unknown auxiliary function substituting 

the value of u1 and v1 from the equations (22) and (23) in 

the equation (21), the differential equation governing the 

problem of a normally loaded composite beam is 

obtained: 

( . . )Yu Xv Yv XuA A A A p  
       (24) 
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The order of the governing differential equation (28) 

depends on the order of the terms in the matrix [A]. 

 

The auxiliary function φ is chosen such that it satisfies 

the governing differential equation (24), as well as the 

boundary conditions at the edges of the beam. Initial 

functions are obtained from equations (22) and (23). By 

operating on the initial functions by the transfer matrix 

[Li] successively across each layer, we can determine the 

stresses and displacements, within the entire beam. 

 

5. CONCLUSION 

The stresses evaluated at top surface should be quite 

close in value to the intensities of the corresponding 

applied loads. MIF have advantage over other theories 

because no assumptions regarding physical behavior of 

beams are made. MIF have capabilities to converge to an 

exact linear elasticity solution and so provide a governing 

equation of desired order according to the requirements 

of a beam problem of any specific thickness and material 

orthotropy. MIF gives accurate results in case of small 

thickness, large thickness and layered members. 

 

6. NOTATION  

 
l - Span of beam  

E - Young’s modulus of Elasticity  

G - Shear modulus of Elasticity  

μ - Poisson’s ratio  

 

 

 

 

 

 

 

 

 

 

 

7. APPENDIX 
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