
International Conference on Advances in Management and Technology (iCAMT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

23

A Contrast and Comparison of Modern Software Process

Models

Pankaj Vohra

Computer Science & Engineering Department
Thapar University, Patiala

Ashima Singh
Computer Science & Engineering Department

Thapar University, Patiala

ABSTRACT

Software Processes are the lifeline of any Software

Development Model. Software Processes decide the survival

of a particular software development model in the market as

well as in software organization. The set of processes those

proved to be effective and efficient for software development

in one organization may or may not be followed in another

organization. That is other organization finds another

approach for software development more convenient to work

with. This paper explains the progression and remarkable

change in Software Processes and their respective models. It

also summarizes a contrast of classical software processes

with Agility and CBSE.

General Terms

Software Process Models, Software Engineering

Keywords

Software Processes, Agile Development, Change Driven

Process Models, Iterative Process, Extreme Programming,

Component Based Software Engineering, Software Process

Improvement.

1. INTRODUCTION

1.1 Software Process Models
The primary function of software development process

models is to ―determine the order of the stages involved in

software development and evolution and to establish the

transition criteria for progressing from one stage to the next‖

[1]. In history various models were proposed. Figure 1

illustrates the evolution of process models in the past decades.

Change Agile Software CBSE Integ-

Driven Development -ration

 Spiral of Waterfall

 & Agile Process

 Evolutionary

 Model

Plan- Transform

Driven Waterfall Model

 Model

 Stagewise

 Model

 Code and Fix

Ad-hoc Model

 1950 1960 1970 1980 1990 2000 2010

Fig 1: Progression of Process Models

It has also been suggested that the evolution of software

development models originates from the problems of ad hoc

programming that, at first, led towards traditional plan-driven

models and towards iterative change-driven models of

software development. The original meaning of the Latin term

.ad hoc, refers to a methodology that has been designed for a

special purpose (ad hoc = for the purpose of). However, in

this context, as often in software engineering literature [2].

The term ―ad hoc’ is used to refer to the low degree of

methodological discipline.

2. PLAN-DRIVEN MODELS FOR

SOFTWARE DEVELOPMENT
The plan-driven approaches of software development have

been defined as document-driven, code-driven, and traditional

process models [1]. As the names suggest, a common feature

for the plan-driven process models is their emphasis on

defining the scope, schedule, and costs of the project upfront

including, for example, an early fixing stage and extensive

documentation of the end product requirements. One common

characteristic could also be the recurrence of the software

development phases only once during the development

process, i.e., with only hints of iterativity [3]. The two-step

process model of code-and-fix, used in the early days of

software development, resulted in difficulties that necessitated

explicit sequencing of the phases of software development

[1]. In particular, the need to design prior to coding, to define

requirements prior to design, and the need for early

preparation for testing and modification were identified [1].

One of the first models to rise to that challenge was the

stagewise model as early as in the middle of the 1950s [4].

This model evolved from the problems caused by the

increasing size of software programs, which could not be

handled by a single programmer [4]. In 1968, the NATO

Science Committee held a software engineering conference in

Garmisch, Germany, where the software crisis, or software

gap, was discussed (NATO Science Committee 1969). A

standardization of the software development process with an

emphasis on quality, costs, and development practices was the

key recommendation of the conference [6].

Soon after this, as refinement of the stepwise model, the

waterfall model was introduced. The early version of the

waterfall model was introduced in 1970 [5] and it has since

evolved into a concept consisting of the sequential phases of

requirements analysis, design, and development [4].

According to Boehm [1], the waterfall model provided two

main advances over the stepwise model: it introduced

prototyping to parallel the stages of requirements analysis and

design, and provided feedback loops between the sequential

stages. It should also be noted that, already in the early

International Conference on Advances in Management and Technology (iCAMT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

24

Requirement

Analysis

Design & Detail

Design

Coding &

Implementation

Integration &

Testing

waterfall model [5], it had been realized that it might be

necessary to first build a pilot model of the system, i.e., to

conduct two cycles of development and to obtain feedback to

adjust the model. Thus, hints of iterativity in the model can be

seen yet .this iterative feedback-based step has been lost in

most descriptions of this model, although it is clearly not

classic IID. [7]. Today, the waterfall model has been adopted

for most software acquisition standards in government and

industry [1]. While the waterfall model has solved various

core problems in software development, it also includes

features not appropriate for every software development

context [1]. One central problem of the waterfall model has

been identified as its .emphasis on fully elaborated documents

as completion criteria for early requirements and design

phases [1].

It can be argued that the plan-driven models of software

development can and should be applied in a dynamic way by

repeating the phases or even the entire process, if necessary.

However, the original purpose of these process models was

not to welcome changes during the development, but rather to

try to fix factors, such as scope, time and money, up-front in

order to eliminate change which was considered a risk factor.

3. ITERATIVE CHANGE-DRIVEN

MODELES FOR SOFTWARE

DEVELOPMENT
The software development models, developed after the

waterfall model, seem to have the common aim of enabling, at

least to some degree, the evolution of product requirements

during the process of software development. This contributed

one main modification to the earlier software development

models: the adoption of the iterative and incremental

approach. Iterative development refers to the overall lifecycle

model in which the software is built in several iterations in

sequence [8]. According to [8], each iteration can be

considered as a mini-project in which the activities of

requirements analysis, design, implementation and testing are

conducted in order to produce a subset of the final system,

often resulting in internal iteration release. An iteration

release has been defined as ―a stable, integrated and tested

partially complete system‖ [8]

A development approach where the system is developed in

several iterations is called iterative and incremental

development (IID), yet it is often referred to as iterative

development. [8].

Even though agile software development has recently brought

the IID approach of developing software into the spotlight, the

history of these approaches is, in fact, considerably longer [7].

Among the first models that focused on increasing the

possibility of determining product improvements throughout

the development process, was the evolutionary development

(Evo) model. This concept was first introduced in 1981 [9]

and has been expanded by Gilb [10], [11].

The spiral model of the late 1980s [1] typically consists of

four iteratively repeatable steps: 1) determining the objectives,

alternatives, and constraints, 2) evaluating alternatives, and

identifying and resolving risks, 3) development and

verification, and 4) planning the next phase. [1] Defined the

spiral model as a risk-driven approach for software

development.

Agile software development, which emerged in the mid-

1990s, can also be classified as an iterative and change-driven

software development approach. It could be argued that at

present there is no common agile process model with

specified phases, but there is rather a set of fundamentals [12]

common to the methods claiming to be agile. However,

Extreme Programming (XP) [14], which is probably the best-

known among the first agile methodologies, contains an

underlying process model for agile software development that

has been adopted and adapted by its successors. Figure 2

illustrates how Beck [13] has compared the agile development

model of XP with the waterfall model and with the iterative

processes.

 Waterfall Iterative XP

Fig 2: A Contrast: Waterfall, Iterative, Agility and XP

According to [13], XP aims at combining the activities of

analysis, design, implementation and testing, a little at a time,

throughout the entire software development process. The

common feature of agile methods is the recognition that

software development cannot be considered to be a defined

process, but rather an empirical (or nonlinear) one due to the

constant changes that are welcomed during the development

of the software product [16].

4. HISTORY OF AGILE SOFTWARE

DEVELOPMENT
Agile methodologies were emerged in the mid- 1990s, when

software methodologies and techniques such as Extreme

Programming (XP) [13], Scrum [15], eXtreme testing [18],

Crystal Family of Methodologies [19], Dynamic Systems

Development Method (DSDM) [20], Adaptive Software

Development (ASD) [17], and Feature-Driven Development

(FDD) [21] began to emerge. The emergence of agile

methodologies is defined in more detail in [22].

In software development, the agile ―movement‖ was launched

in 2001 when the various originators and practitioners of these

methodologies met to identify the common aspects of these

methods that both combined old and new ideas, and clearly

shared some particular ideologies in common. As a result, the

Manifesto for Agile Software Development was drafted and

the term "agile" was chosen to combine the methods and

techniques that would share the values and principles of agile

software development. The values and principles of the Agile

Manifesto [12] set out the central elements of agility that

should be embedded in any method claiming to be agile.

5. COMPARISON OF CLASSICAL

SOFTWARE PROCESSES WITH AGILE

PROCESSES
Table 1 describes the comparison of Classical Software

Processes and Agile Processes in terms of delivery of product

to customer, on basis of requirement specified by customer,

International Conference on Advances in Management and Technology (iCAMT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

25

request for changes, involvement of customer in development of product and Risk factor as follows:

Table 1. Comparison of Classical Software Processes and Agile Processes

Criterion Classical Software Processes Agile Processes

Request for Changes at any time

during development of product

Here change request is always

rejected throughout

development.

Changes are acceptable at any time during

development.

Delivery of product in time/on

time/early

Usually, deadlines are not meet

and mostly impossible to deliver

product before estimated

deadline.

Delivery of product is as per estimated

deadlines i.e. always delivered in or on

time.

Quality of product is a major concern

In Waterfall model quality of

product is not as desired by

customer, because if user want

some other changes then it is

not possible in one go (during

development time)

Quality is built-in; delivered product

always satisfies the requirement or need of

customer

Involvement of customer throughout

development

After submitting the

requirements in 1st phase,

customer gets involved only on

delivery of product.

Customer must be present at each and

every phase of development.

Requirements
This model is used, if

requirements of customer are

clear and well defined

Agile model is used if requirements of

customer are not clear or changes

frequently.

Pattern

Waterfall model is a sequential

model, means phases are always

followed in consecutive manner.

As change occur frequently, so we can

revisit any phase at any time.

Development time
Development life cycle is longer

as compare to agile model.

If requirements are not so clear, are

gathered on daily basis, then adopting agile

makes sense.

Risk factor

There is a lot of risk of not

meeting customer’s requirement

Risk is less in Agile development because

customer is involved in each and every

phase of development.

6. SOFTWARE PROCESS

IMPROVEMENT
A software process can be defined as ―the sequence of steps

required to develop or maintain software‖ [23], aiming at

providing the ―technical and management framework for

applying methods, tools, and people to the software task‖

[23]. Software Process Improvement (SPI) aims at providing

software development organizations with mechanisms for

evaluating their existing processes, identifying possibilities

for improving as well as implementing and evaluating the

impact of improvements [24].

6.1 Software Process Improvement Models
There are various standard process models, such as CMM®

[25], CMMI® [26], ISO 15504, i.e., SPICE (Software Process

Improvement and Capability Determination), Trillium [27],

and Bootstrap [29] that provide a reference process model

against which organizational processes can be assessed and

improved. Standard software development process models

provide a top-down approach for SPI which offer a

framework against which the organization can evaluate and

improve its own processes and identify practices that would

increase the maturity of the current processes [26].

6.1.1 ISO vs CMM vs Agile

Table 2 describes the comparison of ISO, CMM and Agile

model:

Table 2. ISO vs CMM vs CMM

ISO CMM Agile

Emphasizes

minimal quality

criteria

Emphasizes

process

improvement

and maturity

Emphasizes

individual and

interactions

Set of

documented

procedures that

cover all aspects

of business

Set of processes

practices and

behavior that

deliver predicted

outcomes

Set of methodologies

which helps Rapid

and Continuous

delivery of useful

software

6.1.2 Areas where Agile model suits best:
Agile software development methods are now being widely

used in the IT sector and are increasingly being advocated as

preferable to the traditional development model. Agile models

are applicable at every area of software development. It is best

International Conference on Advances in Management and Technology (iCAMT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

26

suited for Web-Based application in order to remove bugs in

iterative manner.

6.1.2.1 Why to use Agile model for web based

development:
Changes; Adding new features: This is major factor that

effects Web based application most. Web Based applications

must be flexible to welcome changes or add new features. So

it’s better to adopt Agile model for development of web based

application in order to provide flexibility of handling future

changes.

Reduces Risk: In web based development risk of not meeting

user requirement is very high because of lack of user

involvement. Agile model reduces such risk as it requires high

involvement of user in order to deliver high quality product as

per user requirement.

Scrum: In order to deliver high quality Web application scrum

is must so that requirements can be gathered on daily-basis.

Testing/Removing Conflicts: Scrum also suits for testing web

based application. As Scrum involves each and every member

of development team as well as clients. This is the efficient

way to solve conflicts if any.

Extreme Programming(XP): XP aims at combining the

activities of analysis, design, implementation and testing, a

little at a time, throughout the entire development process. It

is the best way to make web application available in shorthand

and to improve it in next iteration. Improvement is done by

removing the bug in iteration process.

7. COMPONENT-BASED SOFTWARE

ENGINEERING

Component-based software engineering emerged in the late

1990s as an approach to software systems development based

on reusing software components.

Definition: Component-Based Software Engineering is a

process that emphasizes the design and construction of

computer-based systems using reusable software

―components‖ [29].

Dictionary meaning of ―Component‖: A unit of, part of a

model.

7.1 Problems of Software Engineering
1. Size & Complexity increases rapidly.

2. Software is upgraded mostly after development

3. Time-to-market must decrease significantly.

4. The cost of product increases according to our predictions

7.2 Issues with Traditional Software

Models
1. Lack of Reusability: Due to development based in specific

requirements.

2. Lack of standardized component interface between

components: Components interfaces are designed for a

specific project. No consistent mechanism for supporting

component interactions

3. Lack of Customization: Customization is not possible.

4. Lack of Component Interoperability: Due to lack of

consistent data exchange mechanism between components;

Due to lack of consistent interaction mechanism between

components

7.3 Component-based Development
All the above issues can be resolved by Component-based

development. As, component based development provides the

idea: to build Software system form pre-existing components.

Example – building furniture from existing components, for

building components that can be reused in different

applications. In CBSE maintenance is done by replacing of

component and introducing new components into system.

7.3.1 CBSE vs Traditional Software Engineering

1. CBSE life cycle is shorter as compare to waterfall model.

Fig 3: Waterfall vs CBSE Development Cycle [30]

2. CBSE develops architecture.

3. CBSE is less expensive because in this high quality &

certified components are reused to form system, which also

reduces risk of failure.

4. In CBSE maintenance is easily done by replacing

components and introducing new component to system

5. Time-to-market is less in Component based development.

8. CONCLUSION
The timely adopted and adapted changes in software

development approaches slowly changed the face of software

development. Different flavors of software development

originating from classical to agile and component based

models showcased distinct ways of software development. As

Adhoc software development approach gave birth to software

crisis, middle-aged plan driven models introduced process

structure. Now the era of change driven development which is

moving towards implementing change in requirement, design

and code at any point of time. One of the Agile development

technique is SCRUM that supports implementing frequent

requirement change. This characteristic of SCRUM made it

first choice of software developers. But SCRUM approach

compromised on software reusability. Whereas CBSE delivers

reusable components. This paper compares and contrasts

traditional software processes with modern software

development approaches like Agile, XP and CBSE. Software

Development with simultaneous process improvement still

remains a challenge for many software organizations.

International Conference on Advances in Management and Technology (iCAMT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

27

9. REFERENCES
[1] Boehm, B. 1988. A Spiral Model of Software

Development and Enhancement. Computer, Vol. 21, 5

(5), May 1988, pp. 61-72.

[2] Basili, V. R. & Reiter, R. 1981. A Controlled Experiment

Quantitatively Comparing Software Development

Approaches. IEEE Transactions on Software

Engineering, Vol. 7, 3 (3), pp. 299-320.

[3] Larman, C. & Basili, V. R. 2003. Iterative and

Incremental Development: A Brief History. IEEE

Software, Vol. 20, pp. 47-56.

[4] Benington, H. D. 1983. Production of Large Computer

Programs. Annals of the History of Computing, Vol. 5, 4

(4), October, pp. 350-361.

[5] Royce, W. W. 1970. Managing the Development of

Large Software Systems. In: The proceedings of the

WESCON. San Francisco. IEEE CS. Pp. 328-339.

[6] Lycett, M., Macredie, R. D., Patel, C. & Paul, R. J. 2003.

Migrating Agile Methods to Standardized Development

Practice. Computer, Vol. 36, 6 (6), June, pp. 79-85.

[7] Larman, C. & Basili, V. R. 2003. Iterative and

Incremental Development: A Brief History. IEEE

Software, Vol. 20, pp. 47-56.

[8] Larman, C. 2004. Agile and Iterative Development: A

Manager’s Guide. Pearson Education, Inc. Boston. 342 p.

[9] Gilb, T. 1981. Evolutionary Development. ACM

SIGSOFT Software Engineering Notes, Vol. 6, 2 (2).

April, pp. 17.

[10] Gilb, T. 1988. Principles of Software Engineering

Management. Addison-Wesley. Wokingham, UK, 464 p.

[11] Gilb, T. 2005. Competitive Engineering: A Handbook for

Systems Engineering, Requirements Engineering, and

Software Engineering Using Planguage. Butterworth-

Heinemann. 480 p.

[12] Agile Alliance Manifesto for Agile Software

Development.2001

[13] Beck, K. 1999. Embracing Change with Extreme

Programming. IEEE Computer, Vol. 32, 10 (10), pp. 70-

77.

[14] Beck, K. 2000. Extreme Programming Explained:

Embrace Change. Addison Wesley Longman, Inc. 190 p.

[15] Schwaber, K. 1995. Scrum Development Process. In:

The proceedings of the OOPSLA’95 Workshop on

Business Object Design and Implementation. Springer-

Verlag. Pp. 117-134.

[16] Williams, L. & Cockburn, A. 2003. Agile Software

Development: It’s about Feedback and Change. IEEE

Computer Society, Vol. 36, 6 (6), June, pp. 39-43.

[17] Highsmith, J. A. 2000. Adaptive Software Development:

A Collaborative Approach to Managing Complex

Systems. Dorset House Publishing. New York, NY. 358

p.

[18] Jeffries, R. E. 1999. eXtreme Testing: Why Aggressive

Software Development Calls for Radical Testing Efforts.

Software Testing & Quality Engineering, Vol.

March/April, pp. 23-26.

[19] Cockburn, A. 1998. Surviving Object-Oriented Projects.

Addison-Wesley. Reading, Mass. 250 p.

[20] Stapleton, J. 2003. DSDM: Business Focused

Development. Second Edition. Addison Wesley. London.

239 p.

[21] Coad, P., LeFebvre, E. & De Luca, J. 1999. Java

Modeling In Color With UML: Enterprise Components

and Process. Prentice Hall. 221 p.

[22] Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J.

2002. Agile Software Development Methods: Review

and Analysis. VTT Publications 478. VTT Electronics.

Espoo. 107 p. ISBN 951-38-6009-4; 951-38-6010-8.

[23] Humphrey, W. S. 1995. A Discipline for Software

Engineering. Addison Wesley Longman, Inc. 242 p.

[24] Florac, W. A., Carleton, A. D. & Barnard, J. R. 2000.

Statistical Process Control: Analyzing a Space Shuttle

Onboard Software Process. IEEE Software, Vol. 17, 4

(4). July–August, pp. 97-106.

[25] Paulk, M., Curtis, B., Chrissis, M. & Weber, C. 1993.

Capability Maturity Model for Software (Version 1.1).

CMU/SEI-93-TR-024. Software Engineering Institute

(SEI). February. 65 p.

[26] SEI, C. M. S. E. I. Capability Maturity Model®

Integration (CMMISM), Version 1.1. Carnegie Mellon

Software Engineering Institute. 2001.

[27] Bell Canada Trillium: Model for Telecom Product

Development & Support Process Capability. Release 3.0.

Bell Canada. December, 1994. 118 p.

[28] Kuvaja, P. & Bicego, A. 1993. Bootstrap: Europe’s

Assessment Method. IEEE Software, Vol. 10, 3 (3),

May, pp. 93-95.

[29] Pressman, R. S., Software Engineering—A Practitioner’s

Approach, New York: McGrawHill International Ltd.,

2010. 847 p

[30] Mili, Mili, Yacoub, Addy Edward, Reuse-Based

Software Engineering, AWiley-Interscience Publication,

John Wiley & Sons,INC.,2002. 540 p.

