

International Journal of Computer Applications (0975 – 8887)

International Conference on Leveraging Information Technology for Inter-Sectoral Research

15

Stagefright: Vulnerabilities, Bug Fixing, Preventive

Measures in Android

Walunj Swapnil K.
MCA Research Scholar,

Mumbai, India

Yadav Anil H.
MCA Research Scholar,

Mumbai, India

ABSTRACT
This paper presents the threats to the Android by using the Loop

Hole in the Operating System of Android. Stagefright is the

group of software bugs that affect versions 2.2 ("Froyo") and

newer of the Android operating system, allowing an attacker to

perform arbitrary operations on the victim's device

through remote code execution and privilege escalation.

Stagefright is believed to be the worst Android vulnerability yet

discovered. All devices running Android versions Froyo 2.2 to

Lollipop 5.1.1 are affected, which are used by approximately

95% of all Android devices, by nearly 1 billion

people. Hackers only need to know your phone number to infect

your device.

Keywords
loop hole; operating system; Froyo; infect

1. INTRODUCTION
In July 2015, security company Zimperium announced that it

had discovered a "unicorn" of a vulnerability inside the Android

operating system. More details were publicly disclosed at the

BlackHat conference in early August — but not before headlines

declaring that nearly a billion Android devices could potentially

be taken over without their users even knowing it. The original

vulnerability was found by Joshua Drake from Zimperium ,

affecting Android versions 1.0 and above.[4] "Stagefright" is the

nickname given to a potential exploit that lives fairly deep inside

the Android operating system itself. The gist is that a video sent

via MMS (text message) could be theoretically used as an

avenue of attack through the libStageFright mechanism (thus the

"Stagefright" name), which helps Android process video files.

Many text messaging apps — Google's Hangouts app was

specifically mentioned — automatically process that video so it's

ready for viewing as soon as you open the message, and so the

attack theoretically could happen without you even knowing it.

Because libStageFright dates back to Android 2.2, hundreds of

millions of phones contain this flawed library.

In July 2015, Evgeny Legerov, a Moscow-based security

researcher, announced that he found at least two similar heap

overflow zero-day vulnerabilities in the Stagefright library,

claiming at the same time that the library has been already

exploited for a while. Legerov also confirmed that the

vulnerabilities he discovered become unexploitable by applying

the patches Drake submitted to Google.[5][6]

2. THE VULNERABILITIES
There are various diverse bugs making up Stagefright, and these

have their own particular CVE [Common Vulnerabilities and

Exposures] numbers for following:

• CVE-2015-1538

• CVE-2015-1539

• CVE-2015-3824

• CVE-2015-3826

• CVE-2015-3827

• CVE-2015-3828

• CVE-2015-3829

Shockingly the patches which are accessible are not connected

straightforwardly to each CVE (as they ought to be), so this will

be somewhat untidy to clarify [1],[2].

2.1 [CVE-2015-1538]
In the MPEG4 taking care of code, the 3GPP metadata (the stuff

that depicts the configuration and other additional information,

when a video is in 3GPP arrangement) taking care of code is

surrey. It didn't dismiss metadata, where the information was too

much extensive, rather just checking on the off chance that it

was too little. This implied it was workable for an assailant to

create an "adjusted" or "ruined" document, which would have a

more drawn out metadata divide than it ought to.

One of the enormous difficulties in composing code to handle

"untrusted" information (i.e. from a client or from whatever

other sort of place outside to your code) is taking care of

variable-length information. Recordings are a flawless case of

this. The product needs to allot memory powerfully, contingent

upon what's going on.

For this situation, a support is made as a pointer to some

memory, yet the length of the exhibit it focuses to was one

component too short. The metadata was then perused into this

exhibit, and it was conceivable to have the last section in this

cluster not be "invalid" (or zero). It's essential the last thing in

the cluster is zero, since that is the manner by which the product

tells the exhibit is done. By having the capacity to make the last

esteem non-zero (since the cluster was conceivably one

component too little), the malignant code could be perused by

another piece of code, and read in a lot of information. As

opposed to stop toward the end of this esteem, it could continue

perusing into other information it shouldn't read [4],[6].

 if (size < 4) {

 return ERROR_MALFORMED;

 }

 uint8_t *buffer = new (std::nothrow) uint8_t[size];

 if (buffer == NULL) {

 return ERROR_MALFORMED;

 }

if (isUTF8) {

 mFileMetaData->setCString(metadataKey, (const char

*)buffer + 6);

https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Android_Froyo
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Remote_code_execution
https://en.wikipedia.org/wiki/Privilege_escalation
https://www.avast.com/c-hacker
https://en.wikipedia.org/wiki/Heap_overflow
https://en.wikipedia.org/wiki/Heap_overflow
https://en.wikipedia.org/wiki/Zero-day_vulnerability
https://en.wikipedia.org/wiki/Patch_(computing)
https://en.wikipedia.org/wiki/Stagefright_(bug)#cite_note-zimperium-protection-1
https://en.wikipedia.org/wiki/Stagefright_(bug)#cite_note-zimperium-protection-1

International Journal of Computer Applications (0975 – 8887)

International Conference on Leveraging Information Technology for Inter-Sectoral Research

16

 }

changed to,

 if (size < 4 || size == SIZE_MAX) {

 return ERROR_MALFORMED;

 }

 uint8_t *buffer = new (std::nothrow) uint8_t[size + 1];

 if (buffer == NULL) {

 return ERROR_MALFORMED;

 }

if (isUTF8) {

 buffer[size] = 0;

 mFileMetaData->setCString(metadataKey, (const char

*)buffer + 6);

 }[10]

2.2 [CVE-2015-1539]
The most limited conceivable "size" of the metadata ought to be

6 bytes, because of it being an UTF-16 string. The code takes the

number esteem estimate, and subtracts 6 from it. On the off

chance that this esteem was under 6, the subtraction would "sub-

current" and wrap around, and we'd wind up with a huge

number. Suppose you can just check from 0 to 65535, for

instance. On the off chance that you take the number 4, and

subtract 6, you can't go underneath zero. So, you do a reversal to

65535 and number from that point. That is what's going on here!

In the event that a length of under 6 was gotten, it could prompt

edges being erroneously decoded, since the byteswap procedure

utilizes the variable len16, whose esteem is acquired from an

estimation starting with (size-6). This could make a much

greater swap operation happen than planned, which would

change values in the casing information in a sudden way [9].

if (metadataKey > 0) {

 bool isUTF8 = true; // Common case

 char16_t *framedata = NULL;

 int len16 = 0; // Number of UTF-16 characters

 // smallest possible valid UTF-16 string w BOM: 0xfe 0xff

0x00 0x00

 if (size - 6 >= 4) {

 len16 = ((size - 6) / 2) - 1; // don't include 0x0000

terminator

 framedata = (char16_t *)(buffer + 6);

 if (0xfffe == *framedata) {

 // endianness marker (BOM) doesn't match host

endianness

 for (int i = 0; i < len16; i++) {

 framedata[i] = bswap_16(framedata[i]);

 }

 // BOM is now swapped to 0xfeff, we will execute

next block too

 }

has changed to,

if (metadataKey > 0) {

 bool isUTF8 = true; // Common case

 char16_t *framedata = NULL;

 int len16 = 0; // Number of UTF-16 characters

 // smallest possible valid UTF-16 string w BOM: 0xfe 0xff

0x00 0x00

 if (size < 6) {

 return ERROR_MALFORMED;

 }

 if (size - 6 >= 4) {

 len16 = ((size - 6) / 2) - 1; // don't include 0x0000

terminator

 framedata = (char16_t *)(buffer + 6);

 if (0xfffe == *framedata) {

 // endianness marker (BOM) doesn't match host

endianness

 for (int i = 0; i < len16; i++) {

 framedata[i] = bswap_16(framedata[i]);

 }

 // BOM is now swapped to 0xfeff, we will execute

next block too

 }[10]

2.3 [CVE-2015-3824]
A biggie! This one is frightful. There's the correct inverse of this

last issue – a whole number flood, where a whole number can

get "too huge". In the event that you achieve 65535 (for

instance) and can't tally any higher, you would move around,

and go to 0 next!

On the off chance that you are dispensing memory in view of

this (which is the thing that Stagefright is doing!), you would

wind up with very little memory allotted in the exhibit. At the

point when information was put into this, it would conceivably

overwrite random information with information the vindictive

record maker controlled.case FOURCC('t', 'x', '3', 'g'):

 {

 uint32_t type;

 const void *data;

 size_t size = 0;

 if (!mLastTrack->meta->findData(

 kKeyTextFormatData, &type, &data, &size)) {

 size = 0;

 }

 uint8_t *buffer = new (std::nothrow) uint8_t[size +

chunk_size];

 if (buffer == NULL) {

 return ERROR_MALFORMED;

International Journal of Computer Applications (0975 – 8887)

International Conference on Leveraging Information Technology for Inter-Sectoral Research

17

 }

 if (size > 0) {

 memcpy(buffer, data, size);

 }

has changed to,

case FOURCC('t', 'x', '3', 'g'):

 {

 uint32_t type;

 const void *data;

 size_t size = 0;

 if (!mLastTrack->meta->findData(

 kKeyTextFormatData, &type, &data, &size)) {

 size = 0;

 }

 if (SIZE_MAX - chunk_size <= size)

 return ERROR_MALFORMED;

 uint8_t *buffer = new (std::nothrow) uint8_t[size +

chunk_size];

 if (buffer == NULL) {

 return ERROR_MALFORMED;

 }

 if (size > 0) {

 memcpy(buffer, data, size);

 }

2.4 [CVE-2015-3826]
Another terrible one! Fundamentally the same as the last one –

another whole number flood, where a cluster (utilized as a

support) would be made too little. This would permit

disconnected memory to be overwritten, which is again terrible.

Somebody who can compose information into memory can

degenerate other information that is disconnected, and

conceivably utilize this to have some code they control be

controlled by your telephone.

case FOURCC('c', 'o', 'v', 'r'):

 {

 *offset += chunk_size;

 if (mFileMetaData != NULL) {

 ALOGV("chunk_data_size = %lld and data_offset =

%lld",

 chunk_data_size, data_offset);

 sp<ABuffer> buffer = new ABuffer(chunk_data_size

+ 1);

 if (mDataSource->readAt(

 data_offset, buffer->data(), chunk_data_size) !=

(ssize_t)chunk_data_size) {

 return ERROR_IO;

 }

 const int kSkipBytesOfDataBox = 16;

 mFileMetaData->setData(

 kKeyAlbumArt, MetaData::TYPE_NONE,

 buffer->data() + kSkipBytesOfDataBox,

chunk_data_size - kSkipBytesOfDataBox);

 }

changed to,

case FOURCC('c', 'o', 'v', 'r'):

 {

 *offset += chunk_size;

 if (mFileMetaData != NULL) {

 ALOGV("chunk_data_size = %lld and data_offset =

%lld",

 chunk_data_size, data_offset);

 if (chunk_data_size >= SIZE_MAX - 1) {

 return ERROR_MALFORMED;

 }

 sp<ABuffer> buffer = new ABuffer(chunk_data_size

+ 1);

 if (mDataSource->readAt(

 data_offset, buffer->data(), chunk_data_size) !=

(ssize_t)chunk_data_size) {

 return ERROR_IO;

 }

 const int kSkipBytesOfDataBox = 16;

 mFileMetaData->setData(

 kKeyAlbumArt, MetaData::TYPE_NONE,

 buffer->data() + kSkipBytesOfDataBox,

chunk_data_size - kSkipBytesOfDataBox);

 }[10]

2.5 [CVE-2015-3827]
Very like these last ones. A variable is utilized when skirting

some memory, and this could be made negative amid a

subtraction (like above). This would bring about an extensive

"skip" length, flooding a cushion, offering access to memory that

shouldn't be gotten to.

const int kSkipBytesOfDataBox = 16;

 mFileMetaData->setData(

 kKeyAlbumArt, MetaData::TYPE_NONE,

 buffer->data() + kSkipBytesOfDataBox,

chunk_data_size - kSkipBytesOfDataBox);

 }

changed to,

const int kSkipBytesOfDataBox = 16;

International Journal of Computer Applications (0975 – 8887)

International Conference on Leveraging Information Technology for Inter-Sectoral Research

18

 if (chunk_data_size <= kSkipBytesOfDataBox) {

 return ERROR_MALFORMED;

 }

 mFileMetaData->setData(

 kKeyAlbumArt, MetaData::TYPE_NONE,

 buffer->data() + kSkipBytesOfDataBox,

chunk_data_size - kSkipBytesOfDataBox);

 }[10]

There are additionally a few (conceivably) related fixes that

hope to have made it into [Android] 5.1 also.

This adds checks to stop issues with a past security alter to

include limits checks, which can itself be flooded. In C, numbers

that can be spoken to as a marked int are put away as a marked

int. Else they stay unaltered amid operations. In these checks, a

few whole numbers could have been made marked (as opposed

to unsigned), which would lessen their most extreme esteem

later on, and take into account a flood to occur.

Some more whole number undercurrents (where numbers are too

low, and after that subtraction is completed on those numbers,

permitting them to go negative). This again prompts a vast

number, as opposed to a little one, and that causes an

indistinguishable issue from above.

Lastly, another number flood. Same as some time recently, it's

going to be utilized somewhere else, and it could flood.

3. GOOGLE FIXES STAGE FRIGHT BUG
There are some basic security fixes out.

Google has altered 12 vulnerabilities influencing Android

variants 4.4.4 through 6.0.1, including five appraised as "basic"

– the assignment for the most noticeably bad sort of security

bug.

The most genuine defencelessness in this group is a remote code

execution (RCE) bug, assigned CVE-2015-6636, in Android's

mediaserver part.

Mediaserver is regularly used to render remotely-provided sight

and sound substance, so Google is cautioning that an aggressor

could misuse the bug to run malware covered up in booby-

caught media documents conveyed by means of various

strategies, including email, web perusing and MMS.

Mediaserver is a "centre part of the working framework," with

access to video and sound streams too having run-time benefits

that outsider applications don't.

On the off chance that this sounds natural, that is likely in light

of the fact that Google has now fixed 30 vulnerabilities in

mediaserver since month to month Android security redesigns

started in August 2015, as per InfoWorld's Fahmida Y. Rashid.

This mediaserver bug is additionally like the real powerlessness

known as "Stagefright" that influenced up to 95% of Android

gadgets, which could have permitted law breakers to embed

malware correspondingly.

Luckily, to relieve the bug, Google has rolled out improvements

to the default Android informing applications, Google Hangouts

and Messenger, so that they "[no longer] consequently pass

media to procedures, for example, mediaserver."

Google said it made the security redesign accessible to

accomplices on 7 December 2015 "or prior."

Google and Samsung have been speedier at getting security

settles out since Stagefright, yet shockingly, bearers haven't

pushed out overhauls for each kind of Android gadget influenced

by this most recent arrangement of vulnerabilities.

Sprint and Verizon have overhauled their Nexus 5 and 6 gadgets,

as indicated by Softpedia, which additionally reports that other

Android gadgets are required to get the redesigns soon,

including BlackBerry PRIV, Samsung Galaxy S6, Galaxy Note

5 and "some Motorola and HTC cell phones."

When you see a warning that the redesign is prepared on your

gadget, you ought to acknowledge it and move up to the most

recent form of Android "wherever conceivable," Google

suggests.

Until you can apply the security overhaul, be exceptionally

careful about downloading or playing media records.

Try not to acknowledge media messages from obscure senders,

and ensure the setting to Automatically recover MMS messages

in both Hangouts and Messenger is killed.

4. PREVENTIVE MEASURES
To the extent we know, Android antivirus applications won't

spare you from Stagefright assaults. They don't really have

enough framework authorizations to block MMS messages and

meddling with framework segments. Google additionally can't

overhaul the Google Play Services part in Androidto alter this

bug, an interwoven arrangement Google regularly utilizes when

security openings appear.

To truly keep yourself from being traded off, you have to keep

your informing application of decision from downloading and

propelling MMS messages. When all is said in done, this implies

impairing the "MMS auto-recovery" setting in its settings. When

you get a MMS message, it won't consequently download —

you'll need to download it by tapping a placeholder or something

comparable. You won't be at hazard unless you download the

MMS.

You shouldn't do this. On the off chance that the MMS is from

somebody you don't have the foggiest idea, unquestionably

overlook it. On the off chance that the MMS is from a

companion, it would be conceivable their Phone has been

bargained if a worm begins to take off. It's most secure to never

download MMS messages if your telephone is helpless.

To cripple MMS message auto-recovery, take after the proper

strides for your informing application.

• Messaging (incorporated with Android): Open

Messaging, tap the menu catch, and tap Settings. Look

down to the "Interactive media (MMS) messages" segment

and uncheck auto-recover."

• Messenger (by Google): Open Messenger, tap the

menu, tap Settings, tap Advanced, and cripple AUTO

recover."

• Hangouts (by Google): Open Hangouts, tap the menu,

and explore to Settings > SMS. Uncheck "Auto recover

SMS" under Advanced. (On the off chance that you don't

see SMS choices here, your telephone isn't utilizing

Hangouts for SMS. Impair the setting in the SMS

application you use.)

International Journal of Computer Applications (0975 – 8887)

International Conference on Leveraging Information Technology for Inter-Sectoral Research

19

• Messages (by Samsung): Open Messages and explore

to More > Settings > More settings. Tap Multimedia

messages and impair the "Auto recover" choice. This

setting might be in an alternate spot on various Samsung

gadgets, which utilize diverse renditions of the Messages

application.

It's difficult to manufactured a total rundown here. Simply open

up the application you use to send SMS messages (instant

messages) and search for a choice that will incapacitate "auto

recover" or download" of MMS messages.

 Cautioning: If you download a MMS

message, you're still helpless. Also, as the Stagefright

defencelessness isn't only a MMS message issue, this

won't totally shield you from each sort of assault.

Don't ignore updates from Android - when you receive a

notification about an update, accept it, and upgrade to the latest

version of Android.

Avoid opening video and audio files you receive via text or

email. Delete all messages you get, without opening it first, from

any sender you do not recognize.

This recommend users disable “auto retrieve MMS” within their

default messaging app’s settings, as a precautionary measure for

the moment. [9]

5. CONCLUSION
Stagefright is a truly risky danger to all Android gadgets. The

main thing you have to do is to know about the danger.

Stagefright has been only a reminder towards Android and its

issue of discontinuity and additionally redesigns. as of now it is

obscure if the powerlessness has yet been abused in "nature."

Some telephones have as of now been fixed. It highlights how

there is no reasonable system by method for which such basic

fixes can be taken off in a convenient way to various gadgets.

There are applications which can test whether your gadget is at

danger of Stagefright. You can essentially run the tests and after

that choose whether to go for the strategies talked about above.

While OEM's are attempting to take off patches for gadgets, the

unforgiving truth is that the vast majority of these fixes will be

constrained to late leaders as it were. Other non-leads and more

established gadgets, a great deal less from littler OEM's will

proceed on being presented to the like of Stagefright.

6. REFERENCES
[1] https://en.wikipedia.org/wiki/Stagefright_(bug)

[2] https://www.avast.com/faq.php?article=AVKB230

[3] http://www.androidcentral.com/stagefright

[4] https://www.exploit-db.com/docs/39527.pdf

[5] "How to Protect from StageFright

Vulnerability". zimperium.com.

[6] Thomas Fox-Brewster (July 30, 2015). "Russian 'Zero Day'

Hunter Has Android Stagefright Bugs Primed For One-Text

Hacks". Forbes.

[7] http://blog.trendmicro.com/trendlabs-security-

intelligence/android-security-update-includes-fix-for-

stagefright-vulnerabilities-discovered-by-trend-micro/

[8] https://www.engadget.com/2016/03/19/reliable-stagefright-

android-exploit/

[9] https://blog.avast.com/2016/01/07/android-security-

updates-roll-out-to-fight-stagefright-type-bug/

[10] http://www.xda-developers.com/stagefright-explained-the-

exploit-that-changed-android/

http://blog.zimperium.com/how-to-protect-from-stagefright-vulnerability/
http://blog.zimperium.com/how-to-protect-from-stagefright-vulnerability/
http://www.forbes.com/sites/thomasbrewster/2015/07/30/stagefright-vulnerabilties-ready-for-testing/
http://www.forbes.com/sites/thomasbrewster/2015/07/30/stagefright-vulnerabilties-ready-for-testing/
http://www.forbes.com/sites/thomasbrewster/2015/07/30/stagefright-vulnerabilties-ready-for-testing/
https://en.wikipedia.org/wiki/Forbes

