Black Hole Attack in MANETs Preventions and Advancements: A Review

Krishan Kumar
Research Scholar
Masters of Technology,
Computer Science and Engineering
BGIET, Sangrur, Punjab, India

Taranjit Singh Aulakh
Assistant Professor
Computer Science and Engineering
BGIET, Sangrur, Punjab, India

ABSTRACT
A network is a system in which two or more than two computer systems are linked together with wires or without wires. Mobile Ad-Hoc networks (MANETs) are self-directed and distributed networks. MANETs consists of mobile nodes that are free to move in and out of the network. Nodes may be mobile phones, laptops, PCs, Printers, mp3 players, iPods etc. that participate in the network. Any of these nodes can act as a host/router or it can act both at the same time. They can form different topologies depending on their connectivity with each other in the network. These nodes can configure themselves since they have self-configuration ability. They can be deployed into the network at any time as they do not need any infrastructure. Development of various types of routing protocols has occurred in the recent past. Due to their dynamic topology, no infrastructure and no central management system MANETs are vulnerable to various security attacks. In this paper we have proposed a solution to detect and prevent multiple Black Holes in a network and find a secure way to transfer data from source to destination node.

Keywords
DoS, MANET, RREP, RREQ, RERR, AODV

1. INTRODUCTION
A network is a system that consists of a group of computers and other hardware related to it connected via communication channel for sharing data and information. There are two types of networks Wired and Wireless Networks. Mobile Ad-Hoc Networks comes under Wireless Networks. MANET is a collection of mobile nodes which does not need any central access point or base station.

The first generation of wireless networks started from 1972. At that time, PRNET was the name given to network system. The ad hoc networks have the history with the DoDi sponsoring PRNET for the armies. The emergence of second generation took place with the enhancement and implementation of ad hoc network as an ally of SURAN program. It has taken the new heights in 1990 with the introduction of notebook computers and the introduction of the mobile of nodes as the brain child at many research platforms. "Ad-hoc networks" was accepted as a term by the IEEE802.11 subcommittee and from then only the versatile regions came under the eye of the researchers and explorers for the implementation of the ad hoc network. Internet Engineering Task Force (IETF), worked hand in gloves with mobile ad-hoc networking groups for the standardization of protocols for routing in ad hoc network.

Mobile Ad-Hoc Networks comes under Wireless Networks. Wireless networks are getting well known because of their convenience. User is no more subject to wires where he/she is, easy to move and appreciate being connected to the network. There are many characteristics of ad-hoc network that make it a hot selling cake. Some of these characteristics have been pen down like it gives the freedom of the mobility to the client while remaining in the network, the client is free from the establishment of the hardware's and it is also easily installable. It is flexible in nature and can be designed as per the requirement of the client. The variability in the number of clients is also accommodated in the ad-hoc network.

Mobile Ad-Hoc Networks are independent and decentralized wireless systems (See Fig. 1). MANETs comprise of mobile nodes that are free to move in and out in the network. Nodes are the devices that are mobile and that participate in the networks such as mobile phone, laptop, personal digital assistance, MP3 player and personal computer. These nodes can act as host/router or both simultaneously. They can structure self-assertive topologies relying upon their connectivity with one another in the system. To configure themselves is an unique ability by the virtue of which the network can be deployed without the infrastructure. IETF work rigorously for the development of routing protocols for MANET. The development of the routing protocol is the center of attraction in the research zone. Different routing conventions had already been developed for MANET namely AODV OLSR, DSR etc.

Routing in MANETs

Fig. 1 : MANET

2. CLASSIFICATION OF ATTACKS
Understanding of possible form of the attack is the starting point for the development of the secured solution for a secured transmission of information the critical analysis of the security of communication in MANET should be account for. The Vulnerability the cyber-attacks increased by many fold in MANET if there is no central coordination mechanism or it has a shared wireless medium.

The classification of the attack can be done on basis of the origin of attack. It can be classified as internal or external attack. It can also be classified according to the attack behavior which means whether the attack is passive or active.

Advancements:
This classification is important as the attacker can attack at any region as classified.

2.1 Internal/External Attack
External attackers are fundamentally outside the networks who want to get access to the network and once they get access to the network they start sending false packets, denial of service in order to disrupt the performance of the whole network. The nature of the attack is similar to the wired network attacks. These attacks can be anticipated by executing efforts to establish security such as firewall, which mitigates the access of unauthorized person to the network.

The summary of black hole attack done externally is as below
Detection of active route and the address of destination by malicious node.

1. RREP is send by malicious node sends a route reply packet (RREP) including the destination address field spoofed to an unknown destination address. Hop count value is set to lowest values and the sequence number is set to the highest value.

2. RREP is being send by Malicious node to the nearest available node which belongs to the active route. This can also be send directly to the data source node if route is available.

3. The RREP received by the nearest available node to the malicious node will relayed via the established inverse route to the data of source node. The new information received in the route reply will allow the source node to update its routing table.

4. Source node selects new route. Data will be dropped to malicious node on the route on which it is existing.

In the internal attack the attacker who has got the ordinary access to the network or who is present in the network internally or who is participant in some typical exercises of the network can do this attack. As the attacker can access the network so a new malicious node can be introduced either by trading of or by the personation and start acting maliciously. This is better known as internal attack and it is the severe attack as the malicious node is present in your network and that too actively.

2.2 Active/Passive Attack
When the network is attacked in the active mode its critical information is extracted and destroyed it is done to disrupt the network. These can be internal or external attack. When the active attack has to be used to disrupt the efficiency of the network, at that time it is being used as an internal node in the network. Being dynamically involved in the network it is very easy to nab any internal node and exploit it to introduce bogus packets injection or denial of service. The attacker enjoys a strong position in the network and by the virtue of which the messages can be modified, fabricated and replayed.

Unlike active attacks, disruption of the network operations does not happen in passive attacks. In Passive, attack, the attacker keeps a vigil eye on the network to extract the information of the transmission that is happening currently. The attackers passively wait and watch each and every move of the network and understand the communication of node with each other. Before attacking the network the attacker has ample information about the network through which he can easily hijack and can make an attack in the network.

2.3 Black Hole Attack
The crucial situations like natural disaster, war footing, business conferences, demands both MANET and the secured communication of data between two nodes. To make this demand a reality, many second routing protocols were developed in the recent past. These proposed protocols prevent the attack on the safety properly and avoid hazardous conditions.

Various types of attacks on MANET, like Black hole attack, worm hole attack, denial of service, flooding attack impersonation attack, selfish node misbehaving and many more has made it very challenging and crucial to send the data safely from one node to another. Mobile network security is the need of a day. For this in-depth knowledge of the attacks their behaviors and the damages they may cause must be understood. There are many reasons behind that make MANET prone to these attacks. One of the major reasons is absenteeism of the central point for network management and the communication occurs between the nodes mutually. Vigorously changing topology lack of authentication facility and limited resources add another feather to the cap of attacker.

Black hole attack shatters the communication of the route by forging the routing message. This is not the end, further there is drop the packet a forged nodes and, thus these safety property get threatened.

In Black hole attack the sequence no is forged and forcibly acquiring the route by capturing the hop count of a routing message and make all the data packet drops that passes through it. The malicious node poses itself the destination node by sending the concocted RREP to the source node and start the route discovery.

Black hole exhibits to characteristics (1) the node poses itself as destination and having valid route by capturing the node and the ad hoc routing protocol, though the route is fake but this was done to intercept the packets.

The malicious node fits in the data route by different methods this has been explained in the figure below: The figure is self-explanatory that node 1 is source node and node 4 is the destination node. When the source node flashes RREQ to find the optimized route to the destination node to the intermediate nodes, the intermediate node continuously receive and broadcast RREQ. Everything works in order if the RREP from the normal destination node reaches the source node. As shown the node 3 is an attacker node and act as black hole.

Now the node 3 send RREP from itself to the source node before any other intermediate node send the same, making the source node assume that route discovery process has been complete and starts sending the data packets. In the black hole attack the malicious node send RREP to the source node with the hop count of 1 and having large sequence number, in this way the source node will select the malicious node as the destination node as it exhibits minimum hop count after receiving the RREQ from the source node and start sending the data packets to malicious node considering it as the destination node. The Black has got one property that it does not forward any packet and makes all the packets get dropped to itself without the knowledge of source node. The Source node assumes the packets are moving to the destination without having any information that the route has been attacked and the packets are not received by the actual destination node. If these kinds of nodes are multiple in nature and present in a single MANET, makes a situation a crucial, complex and hazards.
Malicious node has one distinct characteristic that it keeps the destination sequence number on the higher side. Since AODV consider the higher value of destination sequence number as the fresh RREP, thus the RREP send by malicious node is treated as the fresh node. By this way the malicious node succeed to porch into the route and this is the black hole attack.

2.3.1 Types of Black Hole Attacks
A Black Hole attack is a kind of denial of service attack where a malicious node can attract all packets by falsely claiming a fresh route to the destination and then absorb them without forwarding them to the destination.

2.3.1.1 Single Black Hole Attack
In single black hole attack only one malicious node poach into the route and attack the MANET (see Fig. 2) by dropping the data packets to its malicious node. The malicious nodes have the routing capability and the attacker take the advantages of the lean routing protocols of MANET. The most vulnerable routing protocol is AODV, which works on the principle that the node having maximum sequence number may be consider as the fresh node that guarantees the loop free route. For the multiple routes, the node which exhibits higher sequence number and having the least hop count is considered as the fresh node with optimized route to the destination.

Fig. 2: Single Black Hole Attack

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Author and Year</th>
<th>Area of Research</th>
<th>Findings</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shree Om et al [5] (2011)</td>
<td>Using Merkle Tree to Mitigate Cooperative Black-hole Attack in Wireless Mesh Networks</td>
<td>Proposed a development of the routing protocol namely merkle hash tree to prevent the probable attack of black hole in the wireless mess network.</td>
<td>Expected the Better packet delivery ratio (PDR) and Better average end-to-end delay</td>
</tr>
<tr>
<td>2</td>
<td>N. Saquib et al [6] (2011)</td>
<td>Analysis of performance of MANET Routing Protocols with the usage of Elegant Visual Simulation Tool</td>
<td>The introduction of ViSim user-friendly graphical Interface for the analysis of the MANET routing protocol</td>
<td>ViSim is an extension of ns-2 simulations in the background it is a user friendly and makes the user visualize the simulated environment.</td>
</tr>
<tr>
<td>3</td>
<td>A. Devassy et al [10] (2012)</td>
<td>Black Hole Attacks were prevented in MANET by using MN-ID Broadcasting</td>
<td>A MN-ID was broadcasted at every node in the network. This was accomplished by the NS-2 Algorithm which in itself is an object oriented event drive software package.</td>
<td>This method prevents the black hole attack imposed by both single and multiple black hole nodes.</td>
</tr>
<tr>
<td>4</td>
<td>Sowmya K.S, et al [2] (2012)</td>
<td>Black hole attacks were detected and prevented in Ad hok network by using ACO</td>
<td>In this research the method for the detection and prevention of black hole attacks was done by notifying the neighboring nodes. The route optimization was done with ACO.</td>
<td>In this research detection and isolation of the malicious nodes was done successfully by sending ALARM packet to its neighbor node. It was also concluded that there was a scope for further research with ACO which has got some added features.</td>
</tr>
<tr>
<td></td>
<td>Author(s)</td>
<td>Title</td>
<td>Description</td>
<td>Result/Conclusion</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>R. Tripathi et al [3] (2012)</td>
<td>Preventive Aspect Of Black Hole Attack In Mobile Ad Hoc Network</td>
<td>The analysis was done on the routing algorithm and the discrete property of the routing protocols was defined. In this research work the simulation was done on 50 moving nodes. The area under the research was of 1000 x 1000 square meters and taking the speed of the node to the peak of 5m/sec. The result was calculated for throughput verses number of black hole nodes with pause time of 0 sec. to 40 sec., 120 sec. and 160 sec. when the threshold value is 1.0.</td>
<td>The results hinted that while using 0, 3 and 5 black hole nodes, in modified AODV for active and inactive watchdog, there was 3 to 8% hike in throughput with the 6% increase in black nodes and this value dips to 3% if the black hole nodes were increased up to 10%</td>
</tr>
<tr>
<td>6</td>
<td>J.Kumar et al [1] (2013)</td>
<td>Study the MANET routing protocols under the black hole attack.</td>
<td>A comparative study to analyze the effect of black attack on MANET was conducted through a simulation. The performance of the two protocols AODV and Improved AODV was considered.</td>
<td>It was shown that IAODV is better than AODV by comparing different performance parameters such as end-to-end delay, overhead and packet delivery ratio in black hole attack</td>
</tr>
<tr>
<td>7</td>
<td>T. P. Singh et al [4] (2012)</td>
<td>Multicast Routing Protocols in MANETS</td>
<td>An energy efficient routing protocol was designed for the multicast environment in which the ad hoc network works. Various routing protocols for multicasting were considered and there deployment issue was taken into consideration</td>
<td>After considering different routing protocols for multicasting in MANET it was concluded that each routing protocol has its own pros and cons. Multicast tree-based routing protocols are efficient in scalability issue but due to mobile nature of nodes it is not successful in MANET. Whereas the Mess based protocols comes out to be more robust for the moving nodes as compared to the tree based routing protocols but due to frequent broad casting they show the scalability problem. The hybrid multicast routing protocol which combination of both tree and mess type protocol delivers the good results. Overall it was concluded that multi casting routing protocols are not suitable for MANET.</td>
</tr>
<tr>
<td>8</td>
<td>A. Mitra et al [11] (2013)</td>
<td>Using Artificial Neural Network Detection Black Hole Nodes in Mobile Ad-Hoc Network were detected.</td>
<td>A comparative Experimental study was done to deal with routing mess, by using Artificial Neural Network (ANN). It was compared with node detection by Cellular Automata (CA).</td>
<td>The simulation put forward the confirmation of the hazards caused by black hole nodes. The impact of the hazard was found to be in agreement with the earlier used technique of the Cellular Automata (CA)</td>
</tr>
<tr>
<td>9</td>
<td>J.-M. Chang et al [7] (2015)</td>
<td>Collaborative Attacks by Malicious Nodes in Ad hoc network were defended with a Bait Detection Approach</td>
<td>The issue of black hole attacks were detected and prevented by designing the dynamic source routing. This CBDS is an integral of proactive and reactive defense mechanism. Researcher reversed the tracing techniques in order to achieve the said goal.</td>
<td>Proposed new mechanism CBDS for detecting malicious node in MANET proves to be the benchmark in terms of packet delivery ratio. It has put behind the DSR, 2ACK and BFTR</td>
</tr>
<tr>
<td>10</td>
<td>K. Bawa et al [8] (2015)</td>
<td>Avoiding the Black Hole Attack in Ad hoc Network using Addition of Genetic Algorithm to Bacterial Foraging Optimization</td>
<td>In the proposed work of the researcher and attempt to design and implement Mobile Ad-hoc Networks using GA and BFO algorithm with Black hole attack and prevent the system from threat using these optimization algorithms has been made</td>
<td>Researcher has analyzed the effect of black hole attack in the performance of GA and BFO protocol. The simulation has been done using the MATLAB. The results of simulation show that when the black hole node exists in the network, it can be affect and decrease the performance of network and it can be optimized by using BFO and Genetic optimization algorithm.</td>
</tr>
</tbody>
</table>
3. CONCLUSION

The Author has thoroughly gone the many research paper and publication related to ad hoc network, black hole attacks, routing protocols and different techniques to prevent the black hole attacks. From these literature the author inferred that though a lot of research with different algorithms and technique had already been done for the detection and prevention of black hole attack in MANET, still there is lot of scope for the further research. One thing has been concluded that AODV routing protocol is more prone to the black hole attack as compared to the other routing protocol like DSR, OLSR and many more. Various detection and prevention algorithms had already been developed and many researchers are still working to find the optimum solution to this black hole attack. The Author is also initiated his research on the black hole attack, prevention and detection. The Author has initiated the work with thick node identification method and hopefully may found the optimal solution for the prevention and detection of the black hole attack in the MANET. In Future we can use other simulator to improve its performance. Multiple black hole can be detected in future scope.

4. REFERENCES


