
International Journal of Computer Applications (0975 – 8887)

International Conference on Advanced Computer Technology and Development (ICACTD-2014)

12

An External Quality Supporting Test- Driven

Development of Web Service Choreographies

Pogiri Ravi Kumar

M.Tech Student
GIET

Rajahmundry, A.P, India

P.V.G.K.Jagannadha Raju

Professor
GIET

Rajahmundry, A.P, India

S.Maruthuperumal, Ph.D.
Professor and HOD CSE and IT

GIET
Rajahmundry, A.P, India

ABSTRACT
Recently, software development teams using agile processes

have started widely adopting test-driven development. Despite

its name, ―test driven‖ or ―test first‖ development isn’t really

a testing technique. Also known as test-driven design, TDD

works like this: For each small bit of functionality the

programmers code, they first write unit tests. Then they write

the code that makes those unit tests pass. This forces the

programmer to think about many aspects of the feature before

coding it. It also provides a safety net of tests that the

programmers can run with each update to the code, ensuring

that refactored, updated, or new code doesn’t break existing

functionality. TDD can also extend beyond the unit or

―developer facing‖ test. Many teams, including my own, use

―customer facing‖ or ―story‖ tests to help drive coding. These

tests and examples, written in a form understandable to both

business and technical teams, illustrate requirements and

business rules. Customer-facing tests might include

functional, system, end-to-end, performance, security, and

usability tests. Programmers write code to make these tests

pass, which shows the product owners and stakeholders that

the delivered code meets their expectations. The results

indicate that, in general, TDD has a small positive effect on

quality but little to no discernible effect on productivity.

However, subgroup analysis has found both the quality

improvement and the productivity drop to be much larger in

industrial studies in comparison with academic studies. A

larger drop of productivity was found in studies where the

difference in test effort between the TDD and the control

group’s process was significant. A larger improvement in

quality was also found in the academic studies when the

difference in test effort is substantial; however, no conclusion

could be derived regarding the industrial studies due to the

lack of data. Finally, the influence of developer experience

and task size as moderator variables was investigated, and a

statistically significant positive correlation was found between

task size and the magnitude of the improvement in quality.

Choreographies have been proposed as decentralized and

scalable solutions for composing web services. Nevertheless,

inherent characteristics of SOA such as dynamicity, scale, and

governance issues make the automated testing of

choreographies difficult. Nevertheless, inherent characteristics

of SOA such as dynamicity, scale, and governance issues

make the automated testing of choreographies difficult. The

goal of our research is to adapt the automated testing

techniques used by the Agile Software Development

community to the SOA context. To achieve that, we aim to

develop software tools and a methodology to enable Test-

Driven Development (TDD) of web service choreographies.

Keywords
Test-driven development,meta-analysis, code quality,

programmer productivity, agile software development.

1. INTRODUCTION
Service-Oriented Computing has been considered the new

generation of distributed computing, being widely adopted.

Service- Oriented Architecture (SOA) aims at the

implementation of Service-Oriented Computing by using web

services as the building block of applications. Computability

of services is one of the SOA principles, however, few

approaches for composing services have been proposed.

Orchestration is a centralizedapproach for service

composition. Although straightforward and simple,

its centralized nature leads to scalability and fault-tolerance

problems. To face this problem, choreographies of web

services have been proposed as a decentralized scalable

composition solution. In spite of all the benefits and

advantages of web service compositions, the automated

testing of composed services has not yet received the needed

attention. There are few techniques and tools directly

applicable for testing these systems because of the dynamic

and adaptive nature of SOA. Some tools, such as SoapUI1 and

WebInject2 have been developed for testing atomic

services. Since composed services are accessible as atomic

services (from the user perspective), these tools can be used in

larger scopes. Nevertheless, on such approach, both

orchestration and choreography are taken as black-boxes,

preventing the use of testing strategies such as unit and

integration tests. In the unit testing approach each service

participating in a composition is taken as a unit, while on the

integration testing approach, the interaction among these

services must be exercised and verified. TEST-DRIVEN

Development (TDD) is among the cornerstone practices of the

Extreme Programming (XP) development process and today

is being widely adopted in industry both as part of a large-

scale adoption of XP and as a stand-alone practice. TDD is

commonly considered to be the amalgamation of test-first

development, in which unit tests are written before the

implementation code needed to pass those tests, and

refactoring, which includes restructuring a piece of code that

passes the tests in order to reduce its complexity and improve

its clarity, understandability, extendibility, and/or

maintainability. TDD is often described with the so-called

―redgreen- refactor cycle‖ that consists of the following steps:

 Design and add a test.

 Run all tests and see the new one fail (red).

 Add enough implementation code to satisfy the new

test.

 Run all tests, repeat 3 if necessary until all tests pass

(green).

 Occasionally refactor to improve code structure.

 Run all tests after refactoring to ensure all tests pass.

International Journal of Computer Applications (0975 – 8887)

International Conference on Advanced Computer Technology and Development (ICACTD-2014)

13

The use of TDD is claimed to bring improvements in code

quality and productivity. However, research studies

investigating the effectiveness of TDD have failed to produce

conclusive results; in fact, all possible outcomes—positive,

negative, and neutral—have been reported for both quality

and productivity improvements obtained with TDD.

2. METHOGLOGY
Since we are also interested in testing the components of

choreographies, i.e., individual services, we started studying

the existing software tools for automated testing of atomic

services. Soap UI is developed in Java and provides

mechanisms for functional, regression, and performance tests.

From a valid Web Service Description Language (WSDL)

specification, the Soap UI tool provides features to build

automatically a suite of unit tests for each operation and a

mock service to simulate the web service under testing. It also

provides mechanisms to measure test coverage. Due to the

distributed and dynamic nature of orchestrations and

choreographies, there are yet few tools for testing and

monitoring the services participating on such compositions.

BPEL Unit provides mechanisms for specifying, organizing,

and executing tests for a Business Process Execution

Language (BPEL) process. Its goal is to exercise the internal

behavior of such processes, validating its outputs by

predefined inputs. In the context of choreographies, there are

even fewer tools than for orchestrations. Pi4SOA3 is a

software tool for modeling choreographies in WS-CDL by

producing the global model and, then, a BPEL specification

for each participant, describing their role in the choreography.

Once modeled, it is possible to validate the flow among the

web services by simulation. This way, Pi4SOA provides

design time mechanisms to verify the global model specified

in WSCDL. An initial effort in understanding the current

scenario of testing techniques for orchestrations

and choreographies was conducted by Bucchiarone. Later, a

more comprehensive survey covering SOA testing was

conducted by Canfora and Di Penta . Both works discuss and

present alternatives for testing web service compositions

based on testing strategies applied to traditional client/server

systems. Acceptance testing aims at verifying the behavior of

the entire system or a complete functionality. It can be

performed by taking the composition as an atomic service. In

this situation, black-box tests and tools that can be applied are

equivalent to atomic services. In the unit testing approach,

each participant is a unit to be tested. For choreographies, the

expected behavior for each partner is defined by its role in the

choreography. Thus, black-box techniques can be applied for

validating this behavior against this specification role. In the

integration testing approach, the interaction among

components (services must be exercised and verified.

Nevertheless, the lack of information about certain partners

and the impossibility of exercising some third-party services

prevent the integration tests. In the SOA context, through the

dynamic binding property, the endpoints of a participating

service are chosen dynamically. Such property can raise the

integration test costs since strong criteria might require testing

all possible endpoints. Model-Based Testing (MBT) can be an

alternative to derive integration test cases. MBT refers to an

approach to derive test cases from the exploitation of formal

models. Some works in this direction try to derive test cases

automatically from choreography specifications, applying

algorithms defined for conformance checking. Some tools

have been developed to convert choreography models into

UML diagrams, and then, derive test cases from these

diagrams. Zhou et al. have proposed a new approach for the

validation of the choreography model by checking a global

model written in WS-CDL to ensure the quality of its design.

First, the choreography is parsed into a data-object graph.

Then, through relational calculus, static validations are

applied. The meta-analysis procedure has gained considerable

attention in recent years as one of the effective ways to

quantitatively summarize and, if possible, interpret the results

of a collection of single studies on a given topic. The analysis

proceeds through a number of distinct steps, as follows:

2.1 Study Identification and Selection
The identification and selection process proceeded in three

stages. First, we identified candidate studies by querying the

electronic databases of the ACM Digital Library, IEEE

Xplore, Springer Link, ISI Web of Science, and Scopus, using

the strings ―Test Driven Development,‖ ―Test First

Development,‖ and ―TDD‖ to search through the Article Title,

Abstract, and Keyword fields. The generated matches were

filtered to include only studies published in peer-reviewed

journals or proceedings from peer-reviewed conferences. The

resulting matches were prescreened for relevance by reading

through the titles and abstracts but also, in some cases, going

through the introduction. All studies found to be relevant, as

well as those whose relevance was still unclear, were selected

for a more thorough analysis. In the final stage, each of the

authors read all of the selected studies and individually

compiled a list of studies to be included in the review. The

individual lists were then compared and all differences were

resolved through discussion. Accordingly, a final list of

studies was derived which would form the subject of the

upcoming meta-analysis.

2.2 Data Extraction and Output Categories
The data extracted from the studies was classified into three

categories: Context, Rigor, and Outputs. Attributes in the first

category recorded contextual and other high- level details

regarding the studies, including The authors of the study, the

number of participants, and the context—academia or

industry—in which the experiment was conducted. Attributes

in the Rigor category aimed to help assess the extent of the

applicability of a study’s results according to the criteria for

study rigor described in. These attributes include the

following: .CT, which indicates the manner in which testing

was done by the control group— iteratively, i.e., interleaved

with coding. OA, indicating the other agile practices that were

included in the development processes; .development and

programming experience of the subjects; .task size of the final

application (in LOC); .duration of the project; .information

about process conformance in the target group (i.e., adherence

to the widely accepted principles of TDD development);

.details of training received by the subjects prior to the

experiment.

2.3 Inclusion and Exclusion Criteria
Studies were included in this meta-analysis if they reported

results on one or more experiments in which the effectiveness

of TDD was compared with that of a more traditional (i.e.,

Test-Last) approach. Such experiments were designed with

subjects being divided into two or more groups, each of which

developed the same or similar products with at least one group

following either development approach. Studies were only

included if they reported quantitative data on at least one of

the investigated outcome constructs. The use of other agile

practices along with TDD was not considered as a limiting

factor.

International Journal of Computer Applications (0975 – 8887)

International Conference on Advanced Computer Technology and Development (ICACTD-2014)

14

2.4 Standardized Analysis
All standardized effect sizes in this paper were computed

using the Comprehensive Meta-Analysis V2 tool by BioStat,

Inc. The Hedges’ g statistic was chosen as the standardized

effect size measure for the analysis as it exhibits better

characteristics for smaller samples when adjusted for small

sample bias in comparison with other parametric measures

such as Cohen’s d and Glass’ Delta. The Hedges’ g statistic is

calculated as g¼ g = mt –mc/spooled; where mt and mc refer

to the mean values reported for the treatment and control

groups, respectively, and spooled refers to the pooled standard

deviation.

3. SOFTWARE PROTOTYPE
Our prototype consists of ad hoc bash scripts for a

choreography enactment, JUnit test cases for automated

testing of the running choreography, and a user interaction

prompt for executing the scripts and tests. In this section, we

first present and explain the choreography developed and

then, we present our automated test scripts and approaches for

applying unit, integration, and acceptance tests on the running

choreography

3.1 The Tested Choreography
To validate our prototype, we designed and implemented a

simple choreography for booking a trip on OK (Open-

Knowledge). The choreography participants were essentially

SOAP/WSDL services and RESTful web services. A user

plans to take a trip and informs the traveler service where and

when to go. After ordering a trip through this choreography,

the user can reserve an e-ticket, and finally, confirm (book) or

cancel it. Initially, traveler invokes travel agency, which

searches for the required flight on the airline. After selecting a

flight, traveler requests a trip reservation to travel agency,

which requests a flight reservation to the airline. After these

two interactions, a user can request the traveler to cancel the

reservation or to book it. Since this process of booking the trip

is more complex than the previous one. The process of

booking a trip starts with the user requesting this operation to

the traveler service, which in Figure 1 is represented by a

white envelope. Then, the traveler service makes a book trip

request to the travel agency, which calls the acquirer to check

whether the user can afford the flight and its services or not.

The acquirer service notifies the purchase refusal to the travel

agency and airline services if the user cannot afford the trip.

In this case, these services send messages to the traveler

reporting the refusal. Otherwise, the acquirer service sends a

payment confirmation to the travel agency and airline

services. After that, the airline service confirms the flight

price with the travel agency and sends the e-ticket to the

traveler. After receiving the confirmation from the acquirer

and the airline, the travel agency sends to the traveler a report

(statement) with the total price paid. Finally, the traveler

sends this response to the use Implemented Test cases We

developed automated test cases for applying the studied

techniques and strategies on our choreography. All tests were

developed using the JUnit framework and can be

automatically compiled and executed by our software

prototype.

1)Unit tests: In choreography context, services are considered

the units for unit testing. Thus, our unit tests validate the

service behavior by verifying each provided functionality. In

our current prototype, to test SOAP web services, a Java

SOAP client (developed using JAX-WS6) needs to be

developed for each service endpoint (i.e., the client is specific

for each endpoint). Once developed, the tests use this client to

invoke the services. Thanks to the inherent flexibility of

RESTful services, we developed a generic REST client (i.e., it

is not restricted to a specific endpoint).

2) Acceptance tests: Differently from other testing strategies,

acceptance tests verify the behavior of the entire system or

complete functionality. From the point of view of an enduser,

the choreography is available as an atomic service. Thus, the

acceptance test validates the choreography as a unit service,

testing a complete functionality. In this context, this type of

test is similar to the approaches of unit testing using the black-

box model, and there is no need to know how the service is

implemented. On our approach, a developer specifies the tests

by calling a service that activates the choreography. Before

the execution, the developer needs to execute a script that

enacts the choreography and deploys the services. Then, the

tests are hacking). Since SoapUI does not provide support

for executed and the actual results are compared with the

expected output values. In the choreography example

explained above, the traveler peer is the service that triggers

it. Therefore, to test the Order Trip Operation, the developer

calls the method on the traveler web service and compares the

returned object properties with the expected ones.

3) Integration tests: Integration tests intend to solve the

problems found when unit tested components are integrated.

Their goal is to verify the unit interfaces and interactions

among system components. Based on the discussion presented

by Bucchiarone for integration testing of choreographies, we

defined an approach for applying integration tests. After all

services have been tested at the unit level, the approach

focuses on integrating each service at a time in the

choreography. Once a service is integrated, the choreography

is enacted by the developer. Then, using runtime monitoring

of the choreography, the framework verifies Whether the

service just integrated behaves as expected. This step is

achieved by checking the messages sent by that component.

For each message, its name, destination, and content are

compared with the expected values.

4. QUANTITATIVE ASSESSMENT
As described previously, our integration testing approach

must collect the messages exchanged among the services.

Such procedure might cause an overhead in the

choreography execution. We have conducted a quantitative

assessment to evaluate possible overheads. In this assessment,

we first deploy our choreography example (see Section III-

A) on a cluster. Each service choreography was allocated on a

dedicated node with a Pentium 4, 3.00GHz processor, with

1GB of RAM, running GNU/Linux and connected to a

100Mb/s LAN. The goal of this assessment was to compare

the execution time of a choreography functionality using and

not using ourapproach for monitoring the choreography at

runtime. We have chosen the order trip functionality for the

experiment. In this execution, 4 messages are exchanged

among the services. We measured the execution time of 1,

2, 4, 8, and 16 sequential order trip executions, collecting and

not collecting all the 4 messages exchanged. First, each

sequence was executed 30 times, e.g., in the case of 8-

sequential order trip executions, we had 30 samples, each one

with the 8-sequential executions. Then, we extracted the

average and standard deviation of these samples.

International Journal of Computer Applications (0975 – 8887)

International Conference on Advanced Computer Technology and Development (ICACTD-2014)

15

5. QUALITATIVE ASSESSMENT
Soap UI provides functionalities for the automatic generation

and execution of test cases from a valid URI; but the tester

must still fill in the XML-Soap envelope, which can be

cumbersome. As depicted in Figure 2, on our unit tests, the

tester interacts with the web services under testing in an

object- oriented way, by invoking methods instead of

manipulating XML-Soap envelopes. However, our web

service client generation is not fully automatic. In our ongoing

work we are seeking to combine the automatic client

generation of SoapUI with the high- level, object-oriented

testing scheme of our approach (free of the burdens of XML

integration tests, we developed a new approach (described in

Section III-B3). To illustrate the benefits of our approach, we

implemented a use case based on our choreography example.

Considering that the travel agency can search for flights in

more than one airline, suppose that another airline service is

integrated into the choreography. This new service is from a

Brazilian provider, and consequently, it charges all tickets in

BRL (Brazilian Real), but our choreography only works with

USD (United States Dollar). Initially, all unit tests for this

new component pass and the incompatible currency is not

noticed at this stage. Then, the integration test detects that the

acquirer service charged theticket price incorrectly since its

service does not apply currency conversions. In this example,

our approach reveals the error and points to where, in the

choreography, it could be fixed. To correct the error, one must

add, for instance, a currency converter service between the

travel agency and acquirer services. In the absence of our

approach, one is limited to acceptance testing strategies to

validate a service integration. In this case, the choreography is

taken as a black-box, preventing the tester to discover where

exactly the error occurred. With our approach, after

identifying a problem, we can start collecting and analyzing

the messages exchanged to isolate the problem. In our current

prototype, for collecting a specific message, the whole

choreography functionality flow must be performed. Thus,

our integration tests take, at least, the same time that an

acceptance test for that choreography flow takes. To improve

our approach, we intend to develop a mechanism that can stop

the choreography after collecting the desired message.

6. MODERATOR VARIABLES
The above discussion on the outcome constructs has shown

that differences in effect sizes of subgroups are most likely

due to other variables. Two among the most important

variables are developer experience and task size, as

highlighted in the discussions in the Academic versus

Industrial subgrouping. In this section, we take a closer look

at the moderating effects of these variables, beginning with a

brief summary of previous research that documents the impact

of these variables on performance of TDD-based development

process.

6.1 Developer Experience
Although the success of TDD is dependent on skills in a

number of different areas, including programming, testing,

design, refactoring, and thinking in a TDD style programming

experience and exposure to TDD are the only variables that

have been explicitly studied summarizes existing studies that

relate the impact of experience on TDD. Mu¨ ller and Ho¨ fer

compared the performance of finalyear undergraduate

students from an XP course with that of professionals with at

least five years of industrial programming experience. The

latter group was also more experienced with regard to use of

automated testing tools and exposure to TDD. All subjects

individually developed a Java-based elevator control system

following the TDD approach until they felt they were done;

their programs were then evaluated using previously prepared

acceptance tests. The subjects in the professional group were

found to finish the task in shorter time, and this result was

statistically significant. The difference was attributed to faster

coding speed and higher level of programming experience.

However, a larger proportion of programs prepared by the

students passed the acceptance tests, but this result was not

statistically significant. This somewhat unexpected result was

attributed to the professionals’ perception of the acceptance

testing process as a regular adjunct to testing and thus being

assigned lower priority. On the other hand, subjects in the

students group viewed the acceptance tests as a more formal

assessment criterion, and thus ensured, to a greater degree,

that the implemented functionality was in working order prior

to submission.

6.2 Task Size
We have also analyzed the relationship between task size and

the magnitude of the improvement brought about by TDD; 14

data points (effect sizes and respective task sizes) could be

obtained from the analysis on quality and 13 from the analysis

on productivity versus task size; for clarity, the x-axis uses a

logarithmic scale. A visible trend can be identified in the plot

for quality, unlike the plot for productivity where such a trend

cannot be easily observed; the relationships of both quality

and productivity improvements with task size appear to be

logarithmic in nature.

7. THREATS TO VALIDITY
The major obstacle in conducting this analysis was the lack of

data available for computing the standardized effect size in

each experiment. Although we partially overcame this

obstacle by using an unstandardized effect size measure, all

unstandardized measures within the context of this research

suffer from two principal disadvantages.

8. CONCLUSION
This research intended to investigate the effectiveness of TDD

by applying meta- analytical techniques to previous empirical

research on the external quality and productivity outcome

constructs. Despite Consider able differences among the

experiments, valuable insight can be gained from this

analysis. Overall, our analysis suggests that TDD results in a

small improvement in quality but results on productivity are

inconclusive. To gain deeper insight into the differing levels

of improvement observed for both outcome constructs, we

have also conducted subgroup analyses using two major

subgrouping strategies. Under the Academic versus Industrial

subgrouping, much larger improvements in quality were

found in the Industrial experiments, which may be attributed

to higher developer experience and much larger task sizes in

those studies. Although the analysis on moderator variables

identified a correlation with task size, no concrete evidence

was found relating the experience level to the magnitude of

the improvement in quality. one of our goals is to develop a

TDD methodology that will help developers and project

leaders to deal with the key-issues involved in testing large

scale, distributed, Internet systems and will guide them in the

production of effective and efficient test suites for web service

choreographies. To achieve this goal, we first intend to

develop an open source testing environment to support the

methodology proposed. Based on the results of the current

International Journal of Computer Applications (0975 – 8887)

International Conference on Advanced Computer Technology and Development (ICACTD-2014)

16

work and on the lessons learned from the prototype

development, we can derive some requirements and

challenges that must be faced to achieve our future goals.

9. REFERENCES
[1] H. M. A. Bucchiarone and F. Severoni. Testing service

composition. In 8th Argentine Symposiumon

Software Engineering (ASSE’07), Argentina, 2007.

[2] G. Canfora and M. Di Penta. Testing services and

service-centric systems: challengesandopportunities.IT

Professional, 8(2):10 –17, march-april 2006.

[3] G. Canfora and M. Di Penta. Service- oriented

architectures testing: A survey. In A. De Lucia and F.

Ferrucci, editors, Software Engineering, volume 5413 of

LNCS, pages 78–105. Springer, 2009.

[4] L. Frantzen, M. N. Huerta, Z. G. Kiss, and T. Wallet.

On-The-Fly Model- Based Testing of Web Services with

Jambition. In 5th International Workshop on Web

Services and Formal Methods – WS-FM 2008, 2009.

[5] P. Mayer and D. L¨ubke. Towards a BPEL unit testing

framework. In Proceedings of the 2006 workshop on

Testing, analysis, and verification of web services and

applications, TAV-WEB ’06, pages 33–42, New York,

NY, USA, 2006. ACM.

[6] A. Stefanescu, S. Wieczorek, and A. Kirshin.

MBT4Chor: A model-based testing approach for service

choreographies. In Proceedings of the 5th European

Conference on Model Driven Architecture – Foundations

and Applications, ECMDA-FA ’09, Berlin, Heidelberg,

2009.

[7] Z. Wang, L. Zhou, Y. Zhao, J. Ping, H. Xiao, G. Pu, and

H. Zhu. Web services choreography validation. Service

Oriented Computing Applications, 4, December 2010.

[8] L. Zhou, J. Ping, H. Xiao, Z. Wang, G. Pu, and Z. Ding.

Automatically testing web services choreography with

assertions. In Proceedings of the 12th international

conference on Formal engineering methods and software

engineering, ICFEM’10, pages 138–154. Springer-

Verlag, 2010.

[9] T. Huedo-Medina, J. Sa´nchez-Meca, F. Marı´n-

Martı´nez, and J. Botella, ―Assessing Heterogeneity in

Meta-Analysis: Q statistic or I2 Index?‖ Psychological

Methods, vol. 11, no. 2, pp. 193-206, 2006.

[10] G. Melnik and F. Maurer, ―A

 Cross-ProgramInvestigationofStudents’

Perceptions of Agile Methods,‖ Proc. 27th Int’l

Conf. Software Eng., pp. 481-488, 2005.

[11] S. Kollanus and V.Isomo¨ tto¨nen,

Understanding TDD in Academic Environment:

Experiences from Two Experiments,‖ Proc. Eighth Int’l

Conf. Computing Education Research, pp. 25-31, 2008.

[12] A. Rendell, ―Effective and Pragmatic Test Driven

Development,‖ Proc. AGILE, pp. 298-303, 2008.

[13] J. Langr, ―Evolution of Test and Code via Test-First

Design,‖ Proc. ACM Conf. Object-Oriented

Programming, Systems, Languages, and

Applications, http:/www .objectmentor.com

/resources/arti cles/tfd.pdf, Oct.2001.

[14] D.H. Steinberg, ―The Effect of Unit Tests on Entry

Points, Coupling and Cohesion in an Introductory Java

Programming Course,‖ Proc. XP Universe, Oct. 2001.

[15] J. Sanchez, L. Williams, and E. Maximilien, ―On the

Sustained Use of a Test-Driven Development Practice at

IBM,‖ Proc. AGILE, pp. 5-14, 2007.

[16] L. Madeyski, ―The Impact of Pair Programming and

Test-Driven Development on Package Dependencies in

Object-Oriented Design—An Experiment,‖ Proc.

Seventh Int’l Conf. Product-Focused Software Process

Improvement, pp. 278-289, 2006.

