
International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

18

Distributed on Demand Logging using Secured Cloud

Service

Jesheela A.P
Mtech Student, CSE Department

N.S.S College of Engineering
Palakkad

 Sindhu S
HOD, CSE Department,

NSS College of Engineering
Palakkad

ABSTRACT
Log records are important part of an organization.

Maintaining log records securely for a longer period of time is

important for proper functioning of any organization. Since

log files contain record of system events, the confidentiality

and privacy of log data should be maintained and also

integrity of log data and logging process should be ensured.

The log data are stored in the server with in an organization

for a fixed time and sent to the cloud .There will be a great

chance of attack when log data are stored in plain text in the

server of an organization. However, deploying a secure

logging framework is one of the main difficulties that an

organization faces in this new era. In this paper, we present an

approach for secure logging by which log data can be sent to

the cloud directly at run time.

Keywords
Logging, secure logging, cloud, rest, encryption

1. INTRODUCTION
Log records are important part of any organization. Logs are

useful when performing auditing and forensic analysis, for

identifying security incidents, establishing baselines, and

identifying operational trends and long-term problems [1].

Since log data contain system crash results, user activities

(e.g.: account details), logging is important and they become

important targets of malicious attackers. An attacker tries to

damage log files or log records, if the log files contain

sensitive information then that will lead to confidentiality

breaches. For example, in banking, the log information

regarding transaction on account number of a particular user,

can be helpful for an attacker to an unauthorized access to the

system. Log information also leads to privacy/security

violation of users in the system since log file contains record

of all events in the system.

So logging should be provided in a secure manner and the log

files should be protected from attackers. A Traditional logging

protocol based on syslog [2] is not concerned with security

features. However security extensions have been proposed in

the paper [3], [4], and [5], [6]. But these do not protect the

log records from end point attacks and only provides partial

protection. Another important thing about log management is

that the log service must be able to store data in an organized

manner and provide a fast and useful retrieval facility and

also log management requires substantial storage and

processing capabilities too.Inorder to meet all these

requirement an organization need to deploy a secure logging

framework and it may needs huge amount .

In this paper, we propose a solution for storing and

maintaining log records in a server operating in a cloud-based

environment. Integrity, security and authentication can be

maintained during log generation onwards. The major

contributions of this paper are as follows. We propose

architecture for secure logging and develop cryptographic

protocols to address integrity and confidentiality issues with

storing, maintaining, and querying log records at cloud

provider. This prevents the cloud provider, or any other

observer or attacker itself from manipulating the log data with

other data. Finally, we develop a proof-of-concept prototype

to validate our approach. So our approach provides a complete

solution to the cloud based secure log management problem

both practically and theoretically.

2. DESIRABE PROPERTIES OF SECURE

LOGGING AS A SERVICE
The following are the desirable properties of securing logging

service.

1) Correctness: Log data is useful only if it reflects true

history of the system at the time of log generation.

2) Tamper Resistance & verifiability: Tampering is attacker‘s

activity to alter/modify the data. A secure log must be tamper

resistant in such a way that no one other than the creator of

the log can introduce valid entries. Once those entries are

created they cannot be manipulated without detection. The

corresponding systems should be intelligent enough to make

sure it‘s not tampered. The systems should check if some of

the entries have been deleted.

3) Confidentiality: Log entries should not be stored in plain

text format. Only the sender/receiver will be able to

encrypt/decrypt the logged entries.

4) Performance: Since the application logging service is

auxiliary functionality of any application, this should be fast

enough. Otherwise it will affect the performance of the main

application

3. RELATED WORKS
The one of the main property that is needed for secure logging

service using cloud is correctness. That is the log data which

is stored on the cloud should be correct, it should be exactly

the same as the one that was generated. The next desirable

properties are the tamper resistance – log data cannot change

or modify once they are generated without any detection. The

main advantage of secure log is that no one can including the

attacker can change the log data and any attempt to alter log

data [7] would be failed .The other important properties are

confidentiality and security. Log records should not be

searchable to gather sensitive information other than system

administrator. Moreover log records should not be traceable

or linkable to their sources during transmission and in storage.

A number of approaches have been proposed for secure

logging. Syslog-ng [4] application supports reliable and

encrypted transmission of log messages using TCP and

TLS/SSL. It supports IPv6, reliable transfer log messages

using TCP, and filtering the content of logs using regular

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

19

expressions. In this ,in order to ensure integrity and

confidentiality log record are encrypted using SSL during

transmission. But it does not protect log data form

modification at end points. An enhancement to Syslog-ng is

syslog-sign[9].It provide authentication, message integrity,

tamper resistance, message sequencing, and detection of

missing messages using two additional messages—signature

blocks and certificate blocks. But it does not provide

confidentiality or privacy during the transmission of data or at

the end points.

In Syslog-pseudo [10] log records are first processed by a

pseudonymizer before being collected. The pseudonymizer

filters out identifying features from specific fields in the log

record and substitutes them with carefully crafted

pseudonyms. So the log records that are stored are not the

same as the ones that are generated. So this paper doesn‘t

ensure correctness. Another problem with this paper is that

while the protocol anonymizes each log record individually it

does not protect log records from attacks that try to correlate a

number of anonymized records. On the other hand, our

objective is precisely this. Furthermore, privacy breaches that

can occur from scenarios such as the user erroneously typing

the userid in a password field (as discussed earlier) or

identifying information available in fields that are not

anonymized, are also not addressed in this paper. In paper

[11], The anonymous log file anonymizer performs a similar

anonymization of identifying information by substituting with

default values . But, the problem with this paper is that the

original values cannot be restored. Syslog-pseudo, anonymous

log file anonymizer couldn‘t protect log records from

confidentiality and integrity violations and other end-point

attacks.

Paper [6] aims to implement reliable delivery of syslog

messages and is built on top of the blocks extensible exchange

protocol (BEEP [12]) which runs over TCP to provide the

required reliable delivery service. This protocol allows device

authentication and incorporates mechanisms to protect the

integrity of log messages and protect against replay attacks of

log data; however it does not prevent against confidentiality

or privacy breaches at the end-points or during transit.

The method of forward-integrity of log records was proposed

by Bellare and Yee [13] to protect log data from post

compromise insertion, deletion, modification, and reordering.

This is established by a secret key that becomes the starting

point of a hash-chain. In this, the hash-chain is generated by a

cryptographically strong one-way function and the key is

changed for every log record. Schneier and Kelsey [14] also

proposed a logging scheme that supports forward integrity. It

is based on forward-secure message authentication codes and

one-way hash chains similar to that suggested by the Bellare-

Yee protocol. But, the major problem of both schemes is that

both require online trusted servers to maintain the secret key

and verification of log records. When the trusted server is

attacked or compromised, then the security of the log record is

broken. Holt [15] incorporates public verifiability of log

records. This scheme being a public-key based scheme, the

overhead is significantly more. But these three schemes don‘t

consider the privacy concerns of storing and retrieving log

records. All these three scheme suffer from truncation attacks

where an attacker deletes a contiguous subset of log records

from the very end. In paper [7] Ma and Tsudik address this

problem and they use the notion of forward-secure sequential

aggregate authentication in which individual signatures are

folded into one single aggregated signature and all other

signatures are deleted. Without knowing all previous

signatures an attacker cannot recreate this signature. Ma and

Tsudik‘s scheme is very expensive to verify only a single log

record.

In paper [16] secure logging service implemented through

batch updates .This scheme include log generator, logging

client, log monitor and logging cloud. Log generator generates

log data in plain text format files. Log clients take this file and

encrypt and sent to the cloud in batches. The disadvantage of

this approach is that the log data is stored as plain text for a

short while.

4. PROPOSED SYSTEM ARCHITECTURE

Fig 1: Proposed System Architecture

The proposed system architecture consists of on premise

servers and cloud infrastructure. The application servers are at

on premise and the logging service and database at cloud

infrastructure.

 Application server: These are the logging clients

which create the logs on execution of the process.

This will be on premise servers. In memory log data

will be encrypted and invoke the cloud based

logging service to store the log entries.

 Cloud server: These servers will be responsible for

providing the provision for storing /retrieving the

log data in/from the database. We are using cloud

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

20

facilities for both for web servers and database.

 Log viewer server: This will be brand new

application for retrieving the encrypted hashed

logged data from the cloud hosted service. This will

be responsible for verifying the log content against

tampering and decrypt the logged entries.

4.1 Application architecture
The application architecture is divided into two.Viz, Add log

architecture (dealing with logging client and cloud logging

add service) and retrieve log architecture (dealing with log

retrieve viewer and cloud log retrieve service)

4.1.1 Add Log Architecture

Fig 2: Application architecture

4.1.1.1 Modules
• Java based console Application: This Java

application will be proof of concept console

application which performs logging operation.

• SecureLoggingServiceAppender for log4j: Log4j

[24] supports add-ons to its framework as appender.

This will be a custom appender which performs

secure logging using a service.

4.1.2 Data flow diagram

Fig3: Data flow diagram

The logging client is the client application that trying to log

the entries. There is no log generator here. Client application

will decide the log should be secure or not. If the log needs to

be secured, then the new program that has written on top of

Log4J framework will be kicked off. The custom secure

service appender is the new appender what we are going to

create. This will be using the encryption logic (AES

implementation in JAVA). In the log4j configuration , we can

register this new appender. After encrypting the content it will

invoke the rest based web service which has been configured.

The REST based service hosted in the cloud will provide the

entry point for logging the data in the cloud based database.

Before logging it will perform hashing to make the entries

tamper proof.

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

21

4.2 Retrieve log architecture

Fig 4: Architecture of the log data retrieval

The log viewer is a console based application which invokes

the REST based http cloud service to retrieve the encrypted

hashed entries. This application will perform the decryption

and hashing for verification once it got the logs from the

cloud service.

In the development environment, we will develop 3

applications

1) Logging client application: This will be a proof of

concept console application to showcase the secure

logging. We will incorporate log4j framework for

logging and our new secureloggingservice appender to

that.

2) Logging services REST based: we will create a brand

new REST based web service to log the content in

database. This will be using only HTTP POST. We

also have one service which will get the content from

logging database. This will be http GET. We will be

using Tomcat, spring MVC, Java and MYSQL as

software/tools.

3) Log viewer Application: This is a console based

application which invokes cloud based retrieval REST

service. After getting the content it will perform the

hashing for tamper proof verification and decryption

to show the log entries.

 4.3 Tools
 Apache log4j [22] [23] is a Java-based logging utility. It

was originally written by Ceki Gülcü and is now a

project of the Apache Software Foundation. log4j is one

of several Java logging frameworks. There are three

ways to configure log4j: with a properties file, with

an XML file and through Java code. Within either you

can define three main components: Loggers, Appender

and Layouts. Configuring logging via a file has the

advantage of turning logging on or off without

modifying the application that uses log4j. The

application can be allowed to run with logging off until

there's a problem, for example, and then logging can be

turned back on simply by modifying the configuration

file.

 Spring MVC : [19] [20] The Spring Web model-view-

controller (MVC) framework is designed around a

Dispatcher Servlet that dispatches requests to handlers,

with configurable handler mappings, view resolution,

locale, time zone and theme resolution as well as

support for uploading files.

 Tomcat Server: Apache Tomcat is an open source

software implementation of the Java Servlet and Java

Server Pages technologies. The Java Servlet and Java

Server Pages specifications are developed under the

Java Community Process.

 Jelastic Cloud: Jelastic is a Platform-as-Infrastructure

(PAI) cloud computing service that provides networks,

servers, and storage solutions to software development

clients, enterprise businesses, OEMs and Web hosting

providers.

 Apache HTTP client libraries: These libraries are used

to invoke cloud based REST services.

 MySQL DB: We are using MySQL database to store

the log entries and this will be in the cloud behind the

service.

5. ALGORITHM AND FLOW

5.1 Logging client
Logging client is s a proof of concept implementation to

mimic the logging application. Ideally this module can be

implemented any enterprise application that requires secure

logging. When we consider the logging libraries, log4j (java)

and log4net (.net) are the main libraries that are used for

logging. The advantages over other libraries are these

libraries are easier to configure using properties file. With use

of properties file, this logging source and behavior of the

logging can be changed. The other aspect is that it is highly

customizable by using the interceptors.

We are using the interceptor extension provided by Log4J to

log the loggings to a rest service. In the properties file we will

provide the http POST url to log the service. We have

written a custom appender

that will be invoked for all log requests through log4j.

Fig 5: flow of logging client

Log4j.properties

Encryption Secure Logging

Service Service

Log. Error(“ Secure log”) CustomAppender

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

22

The content that is getting the appender will be encrypted

using ―AES‖ symmetric encryption algorithm. This

encrypted content will be send to the secure log service

using HTTP POST technique.

 L1 Encrypted SHA256 algorithm [Private Key]

E (L1)

 L2 Encrypted SHA256 algorithm [Private Key]

E (L2)

 L3 Encrypted SHA256 algorithm [Private Key]

E (L3)

……………………………………………………………….

 Ln Encrypted SHA256 algorithm [Private Key]

E (Ln)

 This encrypted log will be sending across to rest based ,

secure logging service.

Pseudo Code

1. Get the log message using log4j interceptor

2. Convert the string message to bytes.

3. Pass the bytes to AES encryption algorithm along

with the private key.

4. Get the encrypted message from the algorithm.

5. Get the cloud service endpoint (add secure logs)

from the properties URL.

6. Create new HTTP client using apache library.

7. Create a post method and set the encrypted data into

that.

8. Invoke the post method.

9. Make sure we are getting 200 OK as HTTP

response for HTTP post call.

5.2 Secure logging service
5.2.1Secure Logging Add service
The secure logging service is spring MVC rest [18] based

application. We have implemented it as POST

implementation. This will accept encrypted logging content.

This log service will store the content in database. The

content storing in the database is hashed encrypted content.

In database we have created new log table having auto

increment integer as primary key. The other columns in the

table are Message to store the encrypted hashed message and

the current system date time.

Fig 6: Flow of secure logging service

Pseudo Code

1) The logging client will invoke rest based http POST

service by providing the encrypted Entry. E(Ln)

2) As soon as we get the request , it will get the last

entry from the Log table -- T(Ln-1)

3) Using SHA 512 hash algorithm compute hash by

concatenating T(Ln-1) , E(Ln) and Salt

4) Salt is act like one more level of security this will

ensure even you are getting the content you will not

be able to produce the same digest (output from

hash)

5) If the given log is the very first log then H(L1) =

Hash(E(Ln)+Salt)

6) The output of hash is UTF8 encoded 32 byte (256 bit)

digest.

7) Convert the digest to hexa decimal encoding (64 byte)

we termed it as H(Ln)

8) After that we will concatenate H (Ln) with E (Ln).

We termed it as T(Ln)

9) The T(Ln) will be inserted into the Log table with

system date time and Identity key(auto increment)

5.3 Secure logging retrieve service
Logging retrieve service is part of the secure logging service.

Its duty is to provide the encrypted hashed logs to the clients

which have been invoked for the same. This has been

implemented as GET http Rest service [17] .

Fig 7: Flow of log retrieval service

Get Hash of

H (Ln) = Hash (T (Ln-1) + E (Ln)

+Salt)

Get previous log

message from log table

T (Ln-1)
Add Log (E (Ln))

Concatenate

T (Ln) = H (Ln) + E(Ln)

Store new hashed encrypted

entry in the Log Table

Looping through Log

messages and update in one

string variable with using in

between delimiter

Execute the database call

to get the log in increasing order

of logID

GetSecureLogs ()

Send out as http response with all

string content

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

23

 Pseudo Code

1. Log View Client will invoke this service to get the

secure logs .

2. This service will fire a database call to get the logs

from the Log table.

3. After getting the resultset in loop through all

messages add to the output string.

4. Use ―#Secure Message#‖ as a delimiter.

5. So the message will look like T(L1) + ―#Secure

Message#‖ + T(L2) +……+ T(Ln)

6. Put this concatenated jumbo string to http response.

7. The Log Viewer client will get this response.

5.4 Log viewer Client
The purpose of the Log Viewer client is to get the encrypted

hashed logged messages to readable format for its

authenticated users. It has to make sure the logs are not

tampered before decrypting the messages. If one of the

messages are tampered then need to tell the user that ―it is

broken‖

Fig 8: Flow of log viewer

Pseudo Code

1. This log view client will make a HTTP GET

request to the Log retrieval service to get the

encrypted hashed log entries.

2. Split by using the delimiter ―#seclogMessage‖ to

string of array.

3. This array will be log entries T (L1)…… T (Ln).

4. T(Li+1) = H(T(Li)+ E(Li+1)+ salt) + E(Li+1)

This can be also defined as

Tx = [64 bytes of hash digest] +

[EncryptedLogEntry]

5. Compute the hash using H (Li+1x) =T(Li)+

E(Li+1)+ salt

6. Get the first 64 bytes of T(Li+1) , H (Li+1)

7. If H (Li+1x) equals H(Li+1) then no one has

tampered it . Logs are good.

8. If those are not equal then logs are broken.

9. For good log, take rip off first 64 bytes of log entry

then decrypt it using the private key.

10. Show the decrypted message to the client.

6. IMPLEMENTATION AND

PERFORMANCE
As we mentioned earlier our implementation is using java

related technologies. For cloud we have used jelastic cloud

(which is fall under PAS model of the cloud) [22]. We have

used Eclipse Kepler as integrated development environment

for developing all java applications (console/ services) for

the project. All together our code base consists of ~ 300 lines

of code. We were using MySQL as our database.

 Split the Jumbo long delimited

httpResponse to array of

individual log table entries.

T (L1)…. T (Ln)

T

Make Http GET retrieve

service call to Secure log

retrieve service.

 Take 2 consecutive log

entries at a time.

T (Li) and T (Li+1)

Check the recomputed

hash with the first 64

bytes of T (Li+1)

)

Reproduce the hash using

 T (Li) and from 64 bytes till end of

T(Li+1)

H(Li+1) = H(T(Li) + E(Li+1)

Perform the decryption with private

key from 64bytes till end of T (Li+1)

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

24

Fig 9: jelastic UI for secure log service deployed in tomcat

Fig 10: Structure of table in jelastic cloud

6.1 Performance
Since logging service will be invoked for each and every

logging we need to have good connectivity. On 5mbps

internet service we were able to see <130 msec response time.

On 256 kbps connectivity it has been seen around 300 msec to

complete one transaction of secure logging. In order to

minimize the latency we can think of the cloud service hosted

near to the geography of the main logged application.

0

50

100

150

200

250

300

350

5Mbps 256 kbps

Performance Graph

Connectivity

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

25

Advantages over Base paper implementation

The main advantages over the base paper implementation are

1) In base paper, logging has been implemented in

batch mode. The data is stored plain and then later

using secure batch service pushing to the cloud.

Whereas this implementation is log from the source.

2) In base paper they have made complex

implementation of secure cloud logging. Whereas in

proposed implementation it‘s very easy to configure

logging with existing projects.

3) It‘s not easy to switch between the logging needs

from application stand point in the base paper

implementation. Whereas it‘s super easy to change

the logging needs. It can be done just by flipping the

properties file.

4) At any point of time data will not be in plain text

format

7. CONCLUSION AND FUTUREWORK
Logging plays a very important role in the proper operation of

an organization‘s information processing system. However,

maintaining logs securely over long periods of time is difficult

and expensive in terms of the resources needed. The emerging

paradigm of cloud computing promises a more economical

alternative. The existing system proposed a complete system

to securely outsource log records to a cloud provider. The

existing system identified problems in the current operating

system based logging services practical difficulties in some of

the existing secure logging techniques. Since the existing

system uses batch process and at first the individual

applications log the data are saved in plain text format in files.

So someone who can access the system can see the log data

and it does not provide transport level secuirity.The proposed

system overcome the disadvantages of the existing system by

transferring the encrypted log data at run time.

In the proposed system, logging client is invoking the service

(cloud based secured service) just by sending the encrypted

log data. Since there could be ‗n‘ number of logging clients

are trying to invoke the service, there could be

synchronization issues (slow response). In order to avoid that

unique id info can be passed along with the service .This will

ensure to identify the correct logging client details at the

service side and use it one of the attribute to log the data.

Currently the logging retrieval processes are not optimized.

The suggestion is to implement date and time based logging

retrieval processes. Retrieval based on logging client server

specific retrieval can be think of further enhancements in this

area.

8. REFERENCES
[1] K. Kent and M. Souppaya. (1992). Guide to Computer

Security Log Management, NIST Special Publication

800-92[Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-92/SP800-
92.pdf

[2] C. Lonvick, The BSD Syslog Protocol, Request for

Comment RFC 3164, Internet Engineering Task Force,

Network Working Group, Aug. 2001.

[3] M. Bellare and B. S. Yee, ―Forward integrity for secure

audit logs,‖ Dept. Comput. Sci., niv. California, San
Diego, Tech. Rep., Nov. 1997.

[4] BalaBit IT Security (2011, Sep.). Syslog-ng—

Multiplatform Syslog Server and Logging Daemon

[Online]. Available: http://www.balabit. com/network-
security/syslog-ng

[5] J. Kelsey, J. Callas, and A. Clemm, Signed Syslog

Messages, Request for Comment RFC 5848, Internet

Engineering Task Force, Network Working Group, May
2010.

[6] D. New and M. Rose, Reliable Delivery for Syslog,

Request for Comment RFC 3195, Internet Engineering

Task Force, Network Working Group, Nov. 2001.

[7] D. Ma and G. Tsudik, ―A new approach to secure

logging,‖ ACM Trans.Storage, vol. 5, no. 1, pp. 2:1–
2:21, Mar. 2009.

[8] Shams Zawoad, Amit Kumar Dutta& Ragib Hasan

―SecLaaS: Secure Logging-as-a-Service for Cloud

Forensics‖, ACM Trans. Inform. Syst. Security, vol. 2,

no. 2, pp. 159–176, May 1999.

[9] J. Kelsey, J. Callas, and A. Clemm, Signed Syslog

Messages, Request for Comment RFC 5848, Internet

Engineering Task Force, Network Working Group, May
2010.

[10] U. Flegel, ―Pseudonymizing unix log file,‖ in Proc. Int.

Conf. Infrastruture Security, LNCS 2437. Oct. 2002, pp.

162–179.

[11] C. Eckert and A. Pircher, ―Internet anonymity: Problems

and solutions,‖in Proc. 16th IFIP TC-11 Int. Conf.
Inform. Security, 2001, pp. 35–50 .

[12] M. Rose, The Blocks Extensible Exchange Protocol

Core, Request for Comment RFC 3080, Internet

Engineering Task Force, Network Working Group, Mar.

2001.

[13] M. Bellare and B. S. Yee, ―Forward integrity for secure

audit logs,‖ Dept.Comput. Sci., Univ. California, San
Diego, Tech. Rep., Nov. 1997.

[14] B. Schneier and J. Kelsey, ―Security audit logs to support

computer forensics,‖ ACM Trans. Inform. Syst. Security,
vol. 2, no. 2, pp. 159–176, May 1999.

[15] J. E. Holt, ―Logcrypt : Forward security and public

verification for secure audit logs,‖ in Proc. 4th

Australasian Inform. Security Workshop, 2006,pp. 203–
211.

[16] Indrajit Ray, Kirill Belyaev, Mikhail Strizhov,

Dieudonne Mulamba, and Mariappan Rajaram‖ Secure

Logging As a Service—Delegating Log Management to

the Cloud‖ IEEE SYSTEMS JOURNAL, VOL. 7, NO. 2,
JUNE 2013

[17] http://en.wikipedia.org/wiki/Web_service

[18] http://spf13.com/post/soap-vs-rest

[19] http://en.wikipedia.org/wiki/Model%E2%80%93view%E
2%80%93controller

[20] http://viralpatel.net/blogs/tutorial-spring-3-mvc-
introduction-spring-mvc-framework/

[21] http://en.wikipedia.org/wiki/Jelastic

[22] http://www.java-logging.com/

[23] Log4J: http://logging.apache.org/log4j/1.2/

[24] http://en.wikipedia.org/wiki/Log4j

