
International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

23

Pairwise Test Case Generation for Less Number of

Test- Case Sets

Shalini Gupta

Virendra Swarup Group of Institutions, Kanpur,
India

Avdhesh Gupta
IMS Engineering College, Ghazaibad

ABSTRACT

Software testing is the process of analyzing a software item to

detect the differences between existing and required

conditions (that is, bugs) and to evaluate the features of the

software items. Software testing is an activity that should be

done throughout the whole development process. Pairwise

testing primarily targets faults caused by interactions between

two parameters. However, some faults can be caused by

interactions involving more than two parameters. Those faults

cannot effectively be detected by pairwise testing. In this

research work, we presented an algorithm to generate

effective and less number of test cases using pairwise testing

technique. The pairwise testing approach is basically based on

the fact that the majority of possible errors/faults/bugs occur

when two modules/parameters values interact. This proposed

algorithm can be used efficiently in various realms of

software products. In future we can plan to reduce the number

of test cases by using the degree of coverage of three and

four-wise in efficient way. Ultimately this will reduce the total

number of test cases and provide only effective and efficient

test case set and thus it will also save time for both software

developers as well as for software testers.

Keywords

Pairwise testing, software testing, graph base testing.

1. INTRODUCTION
Why test software? To find the bugs! is the instinctive

response and many people, developers and programmers

included, think that that‘s what debugging during

development and code reviews is for, so formal testing is

redundant at best. But a bug is really a problem in the code;

software testing is focused on finding defects in the final

product. Here are some important defects that better testing

would have found.

First, test what‘s important. Focus on the core functionality,

the parts that are critical or popular before looking at the ‗nice

to have features. Concentrate on the application‘s capabilities

in common usage situations before going on to unlikely

situations. For example, if the application retrieves data and

performance are important, test reasonable queries with a

normal load on the server before going on to unlikely ones at

peak usage times. It‘s worth saying again: focus on what‘s

important. Good business requirements will tell you what‘s

important.

The value of software testing is that it goes far beyond testing

the underlying code. It also examines the functional behavior

of the application. Behavior is a function of the code, but it

doesn‘t always follow that if the behavior is ―bad‖ then the

code is bad. It‘s entirely possible that the code is solid but the

requirements were inaccurately or incompletely collected and

communicated. It’s entirely possible that the application can

be doing exactly what we‘re telling it to do but we‘re not

telling it to do the right thing.

Software testing is not a one person job. It takes a team, but

the team may be larger or smaller depending on the size and

complexity of the application being tested. The

programmer(s) who wrote the application should have a

reduced role in the testing if possible. The concern here is that

they‘re already so intimately involved with the product and

know that it works that they may not be able to take an

unbiased look at the results of their labors. Pairwise testing

primarily targets faults caused by interactions between two

parameters. However, some faults can be caused by

interactions involving more than two parameters. Those faults

cannot effectively be detected by pairwise testing. Pairwise

testing is black box testing technique. It is a strategy in which

testing is based solely on the requirements and specifications.

This testing requires no knowledge of the internal paths,

structure, or implementation of the software under test (SUT).

This significantly reduces the number of tests that must be

created and run and these test cases are also manageable so

that any novice software tester can easily operate it against

software applications.

2. LITERATURE REVIEW

Ljubomir Lazic, et al said that organizations are constantly

working to leverage today‘s best practices for testing within

the context of their existing IT environments. As IT works to

balance the business needs for a certain application and the

testing limitations with regards to resources and schedules,

making the best use of the testing environment becomes

critical. Optimized testing is a way for organizations to move

their testing efforts forward to reflect changing business

environments and resource constraints. Optimized testing uses

test techniques which has the highest defect detection yield

and combined with the Orthogonal Array Testing Strategy

(OATS) provides:

1. Pairwise testing that protects against pairwise bugs while

dramatically reducing the number of tests to perform

which is especially cool because pairwise bugs represent

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

24

the majority of combinatory bugs and such bugs are a lot

more likely to happen than the ones that only happen

with more variables.

2. Plus, the availability of tools means you no longer need

to create these tests by hand.

3. Pairwise testing might find some pairwise bugs while

dramatically reducing the number of tests to perform,

compared to testing all 34 combinations because

pairwise bugs represent the majority of combinatory

bugs.

4. Plus, the availability of tools means you no longer need

to create these tests by hand, except for the work of

analyzing the product, selecting variables and values,

actually configuring and performing the test, and

analyzing the results which improves application quality,

maximizes development resources and helps deliver

applications on time and within budget.

The author had found a method that he enjoyed so much that

he used it and talk about it as often as possible. He had seen

this technique referred to as Pairwise Testing.

James Bach et al said that pairwise testing is a wildly popular

approach to combinatorial testing problems. The number of

articles and textbooks covering the topic continue to grow, as

do the number of commercial and academic courses that teach

the technique. Despite the technique's popularity and its

reputation as a best practice, the author found the technique to

be over promoted and poorly understood. In this paper, he

defined pairwise testing and review many of the studies

conducted using pairwise testing. Based on these studies and

our experience with pairwise 39 testing, he discussed

weaknesses he perceived in pairwise testing. Knowledge of

the weaknesses of the pairwise testing technique, or of any

testing technique, is essential if he was to apply the technique

wisely. He concluded by re-stating the story of pairwise

testing and by warning testers against blindly accepting best

practices.

Pairwise testing protects against pairwise bugs while

dramatically reducing the number tests to perform, which is

especially cool because pairwise bugs represent the majority

of combinatoric bugs, and such bugs are a lot more likely to

happen than ones that only happen with more variables. Plus,

you no longer need to create these tests by hand.

Pairwise testing might find some pairwise bugs while

dramatically reducing the number tests to perform, compared

to testing all combinations, but not necessarily compared to

testing just the combinations that matter which is especially

cool because pairwise bugs might represent the majority of

combinatoric bugs, or might not, depending on the actual

dependencies among variables in the product and some such

bugs are more likely to happen than ones that only happen

with more variables, or less likely to happen, because user

inputs are not randomly distributed. Plus, you no longer need

to create these tests by hand, except for the work of analyzing

the product, selecting variables and values, actually

configuring and performing the test, and analyzing the results.

3. PAIRWISE Testing
Consider that a software object has n input parameters, each

parameter having d possible values. One straightforward

approach to testing this object is to test every possible n-way

combination of values; for instance, every combination of

values of the n parameters. This approach covers the entire

input space, but is nearly always impractical for real-world

software due to the well-known combinatorial explosion

problem. The idea of pairwise testing is already 20 years old

but for the last five years its popularity has been rising

extremely. The reason is that testers have to face more

complex software projects with the same time target. Pairwise

testing is an alternative approach that only tries to test every

possible two-way combination of values; that is, every

combination of values of any two parameters. Testing all two-

way combinations, instead of all n-way combinations, does

not cover the entire input space. However, empirical studies

show that many software faults are caused by interactions

between only two parameters. Testing all two-way

combinations can effectively detect these faults, while

substantially reducing the number of tests.

There is much unreliable evidence about the benefit of

pairwise testing. Unfortunately, there are only a few

documented studies:

1. In a case study published by Brownlie of AT&T

regarding the testing of a local-area network-based

electronic mail system, pairwise testing detected 28

percent more defects than their original plan of

developing and executing 1,500 test cases (later reduced

to 1,000 because of time constraints) and took 50 percent

less effort.

2. A study by the National Institute of Standards and

Technology published by Wallace and Kuhn on software

defects in recalled medical devices reviewed fifteen years

of defect data. They concluded that 98 percent of the

reported software flaws could have been detected by

testing all pairs of parameter settings.

3. Kuhn and Reilly analyzed defects recorded in the

Mozilla Web browser database. They determined that

pairwise testing would have detected 76 percent of the

reported errors

3.1 Proposed Algorithm
The proposed algorithm is an effective solution for test case

generation. It is designed in order to obtain less and effective

no of test case set. Whenever a software product is launched

into the market, there is no guarantee whether this product

will provide the same result as per client expectations until

tested against effective test cases. If the software developer

really wants to launch error free software product, then he has

to test it against good test cases.

In this thesis work, we have proposed an efficient algorithm

which is based on pairwise testing technique. As we know

that the behaviour of a software application may be affected

by many parameters, e.g., input parameters, environment

configurations, and state variable. It is impractical to test all

possible combinations of values of all those parameters. So

instead of testing all possible combinations, I considered only

a subset of well defined combinations of parameter values to

test the module in effective way.

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

25

It is also observed that every parameter don‘t participate in

every defects, and it is often the case that a defect is caused by

interactions among few parameters.

By the help of this technique the tester will generate effective

set of test cases .If the software module is tested against these

test cases, then the software developer need not worry about

its performance when it is used by the client side. Also this is

very easy to use these test cases against the software module.

With the help of this Algorithm I tried to remove unused test

cases and reduced testing time. In short, pairwise testing is a

technique that allows user to reduce a large, unmanageable set

of test-case inputs to a much smaller set that is likely to reveal

bugs in the system under test.

Step1: Begin.

Step2: Read input file that contains parameters and their

values.

Step3: Create an empty test case set.

Step4: Construct all pairs of parameter values.

Step5: Select only unique pairs.

Step6: Combine these pairs to form test case.

Step 7: Add these test case to test case set.

Step8: Display test case set.

Step9: End.
Our proposed algorithm is based on greedy approach. This is

simple and straight forward. In this approach we can take

decisions on the basis of information in hand without

worrying about the effect these decisions may have in future.

That‘s why the proposed algorithm is easy to implement and

most of the time quite efficient. This algorithm starts with a

locally optimal choice, and continues making locally optimal

choices until complete set of test cases is found.

According to algo which stands for Modified Pair Test Case

Generation algorithm, first we read an input file which

contains different number of parameters and their different

values. After that we make an empty set E, which will contain

resultant and efficient test cases later. Now construct all

possible 67 pairs of given parameters values. We select only

different pairs of previous constructed pairs. Now combine

these pairs to form test case and add it to empty set E, until all

different pairs are covered by at least one test case. Ultimately

we will get resultant and efficient test case set generated by

algorithm.

Consider three parameters P1, P2 and P3 and their values.

Each parameter has two values. Parameter P1 has value a and

b while parameter P2 contains c, d and P3 has e and f

respectively.

Figure 1: Tree Diagram for Test Case

Here total no of parameter values =6

No of Unique pairs are: 12

These are as follows:

{ (a,c),(a,e),(a,f),(a,d) 69 (b,c),(b,e),(b,d),(b,f)

(c,e),(c,f),(d,e),(d,f) }

Now resultant test set which contains all unique set is:

{ (a,c,e) (a,d,f) (b,c,e) (b,d,f) }

Using MPTCG algorithm, total number of test cases are

reduced to 4 which was originally 8. It shows that proposed

algorithm works well and helpful to generate test case which

are essential for verification and validation of software

product. It will also increase the reliability of the software

component.

4. Result Comparison
After testing our proposed algorithm, I found positive result

comparable to other existing algorithms based on pairwise

testing. Here the output comparison of test suite generated by

basic pairwise (PW), AETG, and our proposed algorithm. The

comparison table is shown below.

Table 1: Comparison of test suite size (basic pairwise,

AETG and proposed also for equally-sized sets.

Sets No. of

Elements

Test Suite

PW AETG New

Algo

3 5 28 28 29

3 6 40 41 39

3 7 53 53 57

3 8 64 64 70

3 9 88 88 89

3 10 112 115 112

4 11 142 148 144

4 12 144 176 173

4 13 194 209 204

4 14 224 234 232

4 15 254 265 272

5 10 130 137 127

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

26

5. CONCLUSION
In this research work, we presented an algorithm to generate

effective and less number of test cases using pairwise testing

technique. The pairwise testing approach is basically based on

the fact that the majority of possible errors/faults/bugs occur

when two modules/parameters values interact. This proposed

algorithm can be used efficiently in various realms of

software products. According to our own knowledge, the

proposed algorithm is quite efficient which covers almost all

different parameter values. But as the no of input parameters

and their values increases, there might be some problem.

These problems are how to handle such large test cases which

increase as the parameter and their values increase.

6. FUTURE WORK
So in our future work we plan to reduce the number of test

cases by using the degree of coverage of three and four-wise

in efficient way. Ultimately this will reduce the total number

of test cases and provide only effective and efficient test case

set and thus it will also save time for both software developers

as well as for software testers.

6. REFERENCES
[1] Pedro Flores, Yoonsik Cheon, PWiseGen: Generating

Test Cases for Pairwise Testing Using Genetic

Algorithms, IEEE International Conference on Computer

Science and Automation Engineering (CSAE 2011),

Shanghai, China, June 10-12, 2011.

[2] Jacek Czerwonka, Pairwise Testing in Real World

Practical Extensions to Test Case Generators, Microsoft
Corporation, February 2008.

[3] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit

Baudry, Yves le Traon Lassy, Automated and Scalable

T-wise Test Case Generation Strategies for Software

Product Lines, Proceeding ICST '10 Proceedings of the

2010 Third International Conference on Software

Testing, Verification and Validation, Pages 459-468,
EEE Computer Society Washington, DC, USA,2010.

[4] James Bach, Patrick J. Schroeder, Pairwise Testing: A

Best Practice That Isn‘t, 22nd Annual Pacific Northwest

Software Quality Conference, 2004.

[5] Kuo-Chung Tai, Yu Lei, A Test Generation Strategy for

Pairwise Testing, IEEE Transaction on Software

Engineering, Volume 8, No. 1, Washington, DC, 13
November 1998.

[6] Kevin Burr, William Young, Combinatorial Test

Techniques: Table-based Automation, Test Generation

and Code Coverage, Software Engineering Analysis Lab,
Nortel. 82

[7] Jerry Huller, Reducing Time to Market with

Combinatorial Design Method Testing, USA, December
2005.

[8] G. Bernet, L. Bouaziz, and P. LeGall, A Theory of

Probabilistic Functional Testing, Proceedings of the 1997

International Conference on Software Engineering, pp.
216 –226,1997.

[9] B. Beizer, Software Testing Techniques, Second Edition,
Van Nostrand Reinhold Company Limited, 1990.

[10] S. Beydeda and V. Gruhn, An integrated testing

technique for component-based software,‖ ACS/IEEE

International Conference on Computer Systems and
Applications, pp 328 – 334, June 2001.

[11] A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti,

An approach to integration testing based on architectural

descriptions, Proceedings of the IEEE ICECCS- 97, pp.
77-84, 1997.

[12] J.B. Good Enough and S. L. Gerhart, Toward a Theory of

Test Data Selection, IEEE Transactions on Software
Engineering, pp. 156-173, June 1997.

[13] D. Gelperin and B. Hetzel, The Growth of Software

Testing, Communications of the ACM, Volume 31 Issue

6, pp. 687-695, June 1988.

[14] J. Hartmann, C. Imoberdorf, and M.Meisinger, UML-

Based Integration Testing, Proceedings of the

International Symposium on Software Testing and

Analysis, ACM SIGSOFT Software Engineering Notes,

August 2000.

[15] W. E. Howden, Functional Testing and Design

Abstractions, The Journal of System and Software,
Volum 1, pp. 307-313, 1980. 83

[16] P. Jalote and Y. R. Muralidhara, A coverage based model

for software reliability estimation, Proceedings of First

International Conference on Software Testing, Reliability

and Quality Assurance, pp. 6 –10 (IEEE), 1994.

[17] E. F. Miller, ―Introduction to Software Testing

Technology, Tutorial: Software Testing & Validation

Techniques, Second Edition, IEEE Catalog No. EHO
180-0, pp. 4-16.

[18] D. Richardson, O‘Malley and C. Tittle, Approaches to

specification-based testing, ACM SIGSOFT Software

Engineering Notes, Volume 14 , Issue 9, pp. 86 – 96
1989.

[19] S. Redwine & W. Riddle, Software technology

maturation, Proceedings of the Eighth International

Conference on Software Engineering, pp. 189-200, May
1985.

[20] M. Shaw, Prospects for an engineering discipline of

software, IEEE Software, pp. 15-24, November 1990.

[21] L. J. White and E. I. Cohen, A Domain Strategy for

Computer Program Testing, IEEE Transactions on
Software Engineering, pp. 247-257, May 1980.

[22] J. A. Whittaker, What is Software Testing? And Why Is
It So Hard? IEEE Software, pp. 70-79, January 2000.

[23] R. Mandl. Orthogonal Latin Squares: An application of

experiment design to compiler testing. Communications

of the ACM, 28(10):1054-1058, October 1985. 84

[24] Y. Lei and K.C. Tai. In-parameter-order: A test

generation strategy for pair-wise testing. In Proceedings

of the third IEEE High Assurance Systems Engineering
Symposium, pages 254-261. IEEE, November 1998.

[25] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton.

The Combinatorial Design Approach to Automatic Test

Generation. IEEE Software, pages 83-88, September
1996.

[26] A.W. Williams and R.L. Probert. A practical strategy for

testing pair-wise coverage of network interfaces. In

Proceedings of the 7th International Symposium on

Software Reliability Engineering (ISSRE96), White

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

27

Plains, New York, USA, Oct 30 - Nov 2, 1996, Nov
1996.

[27] A.W. Williams. Determination of test configurations for

pair-wise interaction coverage. In Proceedings of the

13th International Conference on the Testing of

Communicating Systems (TestCom2000), Ottawa,
Canada, August 2000, pages 59-74, August 2000.

[28] Karen Meagher. Covering Arrays on Graphs: Qualitative

independence Graphs and extremal Set partition Theory.

Chapter 2.

[29] Mats Grindal, Jeff Offutt, Sten F. Andler. Combination

Testing Strategies: A Survey. GMU Technical Report
ISE-TR-04-05, July 2004

[30] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek.

Automated robustness testing of off-the-shelf software

components. In Proceedings of FTCS'98: Fault Tolerant

Computing Symposium, June 23-25, 1998 in Munich,
Germany, pages 230-239. IEEE, 1998.

[31] Macario Polo Usaola and Beatriz Pérez Lamancha, A

framework and a web implementation for combinatorial
testing.

