
International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

11

Dependency Analysis for Component based Systems
using Minimum Spanning Tree

Jyoti Rani

Ajay Kumar Garg Engineering
College, Ghaziabad

Kirti Seth
Ajay Kumar Garg Engineering

College, Ghaziabad

ABSTRACT

Dependency analysis is advantageous technique that has many

applications in software engineering activities. In component-

based system (CBS), Dependencies can solve implicit

problems such as integration testing, regression testing,

change processing, component reusing and version control. In

order to promote testing of the CBS, it is necessary to analyze

the mutual impact between components and form a

description of dependencies. During the present time

dependency analysis is one of the important research fields in

CBS. This paper presents a minimum spanning tree approach

to analyze dependency in Component Based Systems (CBS).

First we calculate the dependency of each component using

Minimum Spanning Tree in component based system and then

calculate the dependency of each component using Analytical

Hierarchal Process. Finally we calculate the Correlation

Coefficient of the two techniques.

General Terms

analytical hierarichal process; minimum spanning tree;

correlation coefficient.

Keywords

component; interaction; interfaces; dependency; component

based systems; Component dependency graph; analytical

hierarichal process; minimum spanning tree; correlation

coefficient.

1. INTRODUCTION

Interaction in component-based systems (CBS) takes place

when a component delivers an interface and other

components use it, and also when a component submits an

event and other component receives it. Dependencies are

promoted by interactions. Higher dependency leads to a

complex system, which results in poor understanding and a

higher maintenance cost.[1]

The dependency among components can be illustrated as the

assurance of a component on other components to support a

specific functionality or configuration[1].

In a Component-Based System (CBS) dependencies rise from

the individual dependencies of each component that compose

the system as well as from the possible casual composition of

the dependencies among those components. A component’s

required interface expresses its dependencies on services

provided by other components. This interface, however,

contains only a fraction of the information necessary to

analyze dependencies embedded in a CBS, partly because

interfaces of a component are typically limited to listing

names and type signatures of the component’s attributes and

services. That information is not sufficient to have a good

understanding of the component’s assumptions about the

services on which it depends, that is, when, under what

conditions, and for what purpose the services are

necessary[4].

Practically, as soon as a new component is installed in a

system, it has an impact on a part of the system. The new

component may refer to certain components, and also be used

by other components. This is a kind of explicit direct

dependency. In addition, there are also indirect dependencies,

derived from the components which are used by the new

component, and also implicit dependencies, that are related to

the system environment. In Component Based Systems, there

are four types of dependencies: explicit dependency, explicit

indirect dependency, implicit direct dependency and implicit

indirect dependency.[5]

Dependence analysis involves the identification of

interdependent elements of a system. It is referred to as a

“reduction” technique, since the interdependent elements

induced by a given inter-element relationship forms a subset

of the system. It has been widely studied for purposes such as

code restructuring during optimization, automatic program

parallelization, test-case generation, and debugging.

Dependence analysis as applied to program code is based on

the relationships among statements and variables in a

program. Techniques for identifying and exploiting

dependence relations at the architectural level have also been

developed. Dependence relationships at the architectural level

arise from the connections among components and the

constraints on their interactions. These relationships may

involve some form of control or data flow, but more generally

involve source structure and behavior. Source structure (or

structure, for short) has to do with system dependencies such

as “imports”, while behavior has to do with dynamic

interaction dependencies such as “causes”. Structural

dependencies allow one to locate source specifications that

contribute to the description of some state or interaction.

Behavioral dependencies allow one to relate states or

interactions to other states or interactions. Both structural and

behavioral dependencies are important to capture and

understand when analyzing an architecture[6].

Dependencies between different components within a

complete system exist in the way that the whole application

becomes unstable if those dependencies are broken or

violated. Normally, there is no reason why this should happen

during work with an application or a tool. However, this can

necessarily occur in the case that (distributed) applications

change during run time. Such changes can appear in many

ways. In the following we will concentrate on two fields of

applications where those changes are not only normal but

intended in a special way[8].

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

12

2. REVIEW

Similar work has been done by many researchers. Binbin

Qu,Qian Liu,Yansheng Lu has been mentioned a new

dynamic dependency analysis framework for COM[3].

Zimmermann and et al.(2011) have also proposed two large

software systems: Microsoft VISTA and ECLIPSE. Their

results showed that components that have outgoing

dependencies to components with higher object-oriented

complexity tend to have fewer field failures for VISTA, but

the opposite relation holds for ECLIPSE[10].

 Usha Kumari and Shuchita Upadhyaya (December 2011)

have designed an interface complexity metric for black-box

components to quantify an important aspect of complexity of

a component-based system[2].

Marlon Vieira and Debra Richardson has given a technique to

analyze dependencies in large component-based systems. This

technique proposed an explicit representation of component

dependencies by using a deployable Extensible Markup

Language (XML) description[4].

Robert Leitch and Eleni Stroulia have been proposed a model

for quantifying the quality of a design from a maintainability

perspective. Based on this model, they propose a novel

strategy for predicting the “Return on Investment” (ROI) for

possible design restructurings using procedure level

dependency alalysis[11].

Saleh Alhazbi and Aman Jantan has been discussed

dependencies analysis significance when updating

component-based system dynamically and presented a

service-based matrix model and nested graph as approaches to

capture components' dependencies they discussed using

dependencies analysis for safe dynamic updating in

component-based software sysrems[12].

 Arun Sharma, P. S. Grover and Rajesh Kumar have been

proposed a link-list based dependency representation and

implements it by using Hash Map in Java[1].

3. DEPENDENCY IN COMPONENT

BASED SOFTWARE DEVELOPMENT

In Component-based development (CBD) paradigm,

Component-based software system (CBSS) are established

using a set of mutually dependent components which work

together. Some of these components may be developed in-

house, while others may be third-party components, without

source code.

The main objective of this approach is to minimize the

development effort, time and cost by means of software reuse.

CBSD advances quality, productivity, reliability and

maintainability of the software system[2].

Dependency between components can be defined as the

reliance of a component on other components to support a

specific functionality; therefore, we consider dependency as a

binary relationship between two components: dependent and

antecedent. Dependent component is one that related to its

antecedents where changes in them might lead dependent to

malfunction or fail. Antecedent is the component that has an

effect on the dependent one if it is removed or modified, on

the other hand, Alhazbi and Jantan. Some times it may occur

that a component has to take help of other components to

perform its functionality. A component A is dependent on

component B means that A must be checked if B changes.

Maximization of such components builds a CBS complex[20].

CBS requirements analysis and component selection is widely

recognized as a commutal process which plays an interior role

in overall CBS development Individual components usually

provide fix capabilities that might not satisfy all system

requirements and some of them may be unnecessary in a

given system. This reduces the chance of a match between a

component and stakeholder requirements. Therefore, it is

difficult to find a supplier who can meet all stakeholder

requirements[14]

3.1 Benefits of CBSD

Software developers create software components mainly with

an intention of being reused in various software systems.

Components are designed to interact with its environment

through its well-defined interfaces but to encapsulate their

implementation. Component-based software development

brings the potential for

1. significant reduction in the development cost and time-to-

market of enterprise softwar systems because developers can

assemble such systems from a set of reusable components

rather than building them from scratch,

2.increasing the reliability of enterprise software systems -

each reusable component undergoes several review and

inspection stages in the course of its original development and

previous uses, and CBSD relies on explicitly defined

architectures and interfaces,

3. improving the maintainability of enterprise software

systems by allowing new, higher quality components to

replace old ones, and

4. enhancing the quality of enterprise software systems -

application-domain experts develop components, then

software engineers who specialize in Component software

engineering assemble those components into enterprise

software systems

3.2 Some common definition proposed by

researchers:

Incoming dependency: A component has an incoming

dependency if syntactically another component appropriates

its data or functionality.

Outgoing dependency: A component has an outgoing

dependency if syntactically it appropriates data or

functionality of another component.

Dependant: A component is a dependent with respect to

another component if it has an outgoing dependency on that

component.

Dependee: A component is a dependee with respect to

another component if it has an incoming dependency from

that component[10].

In general, there are eight types of dependency as follows[5]:

Data dependency: Data dependence is generated by data

integration between different COTS components. In general,

data dependency represents that the data defined in one

component, but used in another one.

Control dependency: Control dependency is generated by

control integration in CBSs, it is not explicit dependency.

Control dependency is realized by broadcasting, remote

procedure calls or by general passing.

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

13

Time dependency: Time dependency means that the behavior

of one component precedes or follows the behavior of another

component in CBSs.

State dependency: State dependence means that the behavior

of a basic component will not happen unless the system, or

some part of the system, is in a specified state.

Cause and effect dependency: Cause and effect dependency

means that the behavior of one component implies the

behavior of another component.

Input/Output dependency: Input/Output dependency means

that a component requires/provides information from/to

another component.

Context dependency: Context dependency means that a

component runs must be special context environment.

Interface dependency: Interface dependency is generated by

user interface integration. Usually, the interface-event

dependency is the main dependency form in CBSs.

4. COMPONENT DEPENDENCY

GRAPH (CDG)

Component Dependency Graph of a CBS is defined as

G=(S,D,s,t), is a directed graph, where S is a non empty set of

vertices each represents a component in the system, D is a set

of dependency edges between two vertices each represents a

direct dependency between components, s is a starting node, t

is a terminating node. Fig 1 describes the direct dependency,

where D={(A,B),(B,D),(C,D),(C,B),(C,A),(E,B),(E,D)}

Fig 1 : Component Dependency Graph

5. PROPOSED APPROACH

We propose a new approach to analyze dependency in

Component Based System (CBS). This approach contains the

following steps:

1. Construct a Component Dependency Graph (CDG) of a

Component Based System(CBS).

2. Assign weights to every edge of Component Dependency

Graph.

3. Calculate the minimum spanning tree for CDG by any one

of the existing algorithms (Prim,s algorithm or Kruskal,s

Algorithm).

4.The dependency of the individual component is the

minimum weight of that component.

Fig. 2 describes the flowchart which helps to calculate

dependency of each component using Minimum Spanning

Tree. First construct Component Dependency Graph, which

have different components and interaction with other

components. Dependency of each component is the minimum

weight of that component. Here weight is the probability of

dependency in Component Dependency Graph.

Weight is directly proportional to the probability of the

dependency it means that if weight increases then probability

of dependency of a component increases, similarly if weight

decreases then probability of dependency of a component

decreases.

Fig 2: Flow chart of Proposed Approach

6. SPANNING TREE

A spanning tree of a graph is a subgraph that contains all the

vertices and is a tree. A graph may have many spanning trees.

 A spanning tree of G is a selection of edges of G that form a

tree spanning every vertex that is, every vertex lies in the tree,

but no cycles are formed. “A spanning tree of a connected

graph G can also be defined as a maximal set of edges

of G that contains no cycle, or as a minimal set of edges that

connect all vertices.” The weight of spanning tree of a graph

is the sum of the weights of all the edges in the spanning tree.

Different spanning trees of a Graph will have different

weights.

6.1 Minimum Spanning Tree

 A single graph can have many different spanning trees. We

can also assign a weight to each edge, which is a number

representing how unfavorable it is, and use this to assign a

weight to a spanning tree by computing the sum of the

weights of the edges in that spanning tree. “A minimum

spanning tree (MST) or minimum weight spanning tree is then

a spanning tree with weight less than or equal to the weight of

every other spanning tree”.

7. DEMONSTRATION OF THE

PROPOSED APPROACH

For the analysis of proposed work we consider a hypothetical

model as shown in figure. This model is a CDG for any CBS.

There are eight components in the graph. The dependency of

each component is assigned as the weight of each edge.

1.Construct a Component Dependency Graph(CDG)

We construct a CDG of 8 components (A,B,C,D,E,F,G,H) and

15 edges which are connected to the components in the graph.

Edges connects the component with each other as shown in

Fig 3 CDG.

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

14

Fig 3: Component Dependency Graph

2 .Assign weights to every edge in the component dependency

graph in Fig 4.

Fig 4: Weights in Component Dependency Graph

3. Calculate minimum spanning Tree, which shown in Fig 5.

Fig 5: MST of Component Dependency Graph

4 .Figure 5 gives the minimum spanning tree of the given

Component Dependency Graph using Prim’s Algorithm.

8. ANALYTICAL HIERARICHAL

PROCESS

Analytical Hierarchy Process is a multi-criteria decision

making process. AHP is a comprehensive, analytical and

structured framework

The AHP, as a compensatory method, accepts complete

aggregation among criteria and develops a linear additive

model. The weights and counts are achieved generally by

pairwise comparisons between all options with each other.

To make a decision in an adapted way to calculate priorities

we need to break down the decision into the following steps.

1. Define the problem and calculate the kind of knowledge

sought.

2. Structure the decision hierarchy from the top with the goal

of the decision, then the objectives from a broad perspective,

through the intermediate levels to the lowest level.

3. Construct a set of pairwise comparison matrices. Each

element in an upper level is used to compare the elements in

the level immediately below with respect to it.

4. Use the priorities obtained from the comparisons to weigh

the priorities in the level immediately below. Do this for every

element. Then for each element in the level below add its

weighed values and obtain its overall or global priority.

Continue this process of weighing and adding until the final

priorities of the alternatives in the bottom most level are

obtained[15, 16,17].

9. CORRELATION COEFFICIENT

A correlation coefficient ammounts the strength and direction

of a linear joining between two variables. The range of

Correlation Coefficient is from -1 to +1. The closer the

absolute value is to 1, the stronger the relationship. A zero

correlation indicates that there is no linear relationship

between the variables. Correlation quantifies the extent to

which two quantitative variables, X and Y, “go together.”

When high values of X are associated with high values of Y, a

positive correlation exists. When high values of X are

associated with low values of Y, a negative correlation

exists[18,19].

Correlation is frequently used as a descriptive tool in non-

experimental research. Two measures are correlated if there is

something in common. The intensity of the correlation is

described by a number called the correlation coefficient which

is almost always denoted by the letter r.

The correlation coefficient is a tool used to appraise the

similarity of two sets of measurements obtained on the same

observations. “Correlation” relates to a process for finding

whether relationships exist between two variables the or not.

The concept of ‘correlation’ is a statistical tool which studies

the relationship between two variables and Correlation

Analysis involves various methods and techniques used for

studying and measuring the extent of the relationship between

the two variables. The coefficient can be either negative or

positive.

“Two variables are said to be in correlation if the change in

one of the variables results in a change in the other variable”.

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

15

“A single summary number that gives us a good idea about

how closely one variable is related to another variable.

The main idea behind correlation coefficient is to calculate an

index which reflects how much two measurements sequences

are related to each other. This coefficient will take values

from -1 to +1.

A value 0 implies that the two sequences of measurements

have nothing in common. A coefficient close to zero indicates

that no methodical co-varying exists between the variables.

A value +1 infers that two sequences of measurements are

measuring the same thing. A positive correlation coefficient

infers that two variables systematically vary in the same

direction: as one variable increases, the other variable tends to

increase. The closer the coefficient is to +1, the stronger the

positive association. In other words, as one variable goes up

so does the other.

A value -1 infers that the two measurements are measuring the

same thing but one measurement varies inversely to the other.

A negative correlation coefficient infers that two variables

systematically vary in opposite directions: as one variable

increases, the other variable tends to decrease. The closer the

coefficient is to -1, the stronger the negative association. The

coefficient of correlation indicates how much information is

shared by two variables, or in other words, how much these

two variables have in common.

10. EMPRICAL VALIDATION

We calculate the component selection efforts by Analytical

Hierarchical Process(AHP). Finally we calculate the

correlation coefficient between these two outputs.

Where,

N equals the number of score-pairs,

X =∑x/n Y =∑y/n

The symbol ∑ is “sigma”, which is a mathematical shorthand

meaning “sum up”.

The value of the correlation coefficient between the outputs

calculated by AHP method comes to be 0.8114.Hence we

conclude that the proposed technology is valid.

Table 1. Dependency of Each Component using MST and

AHP

Correlation Coefficient of the two techniques MST and AHP

of Table 1 calculated. Correlation Coefficient between X and

Y is 0.8114, which says that the dependency using MST and

AHP are strongly related.

11. CONCLUSION

Understanding and tracking dependence among components

in CBSD is increasingly difficult in large and complex

systems. Dependency analysis helps to answer the following

questions in a component based systems: If a component is

updated, which other components in the system are affected,

what is the effect on a system if a new component is installed,

which components are more important than others and which

components are isolated.

Dependencies in a Component-Based System (CBS) take

place from the individual dependencies of each component.

Dependency in component based system rise when a

component provide an interface and another component use it

or when a component sends an event and another component

receive it. This paper proposed a minimum spanning tree

based approach and Analytical Hierarchal Process for

analyzing dependency in component based system and also

calculates the correlation coefficient between the two

techniques which shows that the technique is valid because

the value of correlation coefficient is 0.81, which is near about

to 1.

12. FUTURE WORK

 This data can be used to measure the interaction complexity

of the Component Based System and also can analyze several

interaction and dependency related issues with the proposed

approach. For future work this approach will be validated on

some other applications and the result can also be calculated

in the similar manner for other approaches and then

Correlation Coefficient can be calculated between the other

approaches.

REFERENCES

[1] Sharma, A., Grover, P.S., Kumar, R., 2009.

“Dependency Analysis for Component-Based Software

Systems” Volume 34 Number 4.

[2] Kumari, U., Upadhyaya, S., 2011. “An Interface

Complexity Measure for Component-based Software

Systems” International Journal of Computer Applications

(0975 – 8887) Volume 36– No.1.

[3] Qu, B., Liu, Q., Lu, Y., 2010. “A Framework for

Dynamic Analysis Dependency in Component-Based

System”.

[4] Vieira, M. and Richardson, D.,2002. “Analyzing

Dependencies in Large Component-Based Systems”.

Proceedings of the 17 th IEEE International Conference

on Automated Software Engineering (ASE’02), 2002, pp

241 – 244.

[5] Liangli, M. and Houxiang,, 2006. “The Design of

Dependency Relationships Matrix to improve the

testability of Component-based Software”.

[6] Stafford, A., Richardson, D. and Wolf, A.L., 1998.

“Architecture-level Dependence Analysis in support of

Software maintenance”. ISAW '98 Proceedings of the

third international workshop on Software architecture.

New York, NY, USA, pp 129-132.

International Conference on Advances in Computer Applications (ICACA) 2012

Proceedings published by International Journal of Computer Applications® (IJCA)

16

[7] Abate, P. and Boender,J.,2009, “Strong Dependencies

between Software Components”, Third International

Symposium on Empirical Software Engineering and

Measurement, 24 May 2009, pp 89-99.

[8] Won, M., “Managing Dependencies in Component-

Based Distributed Applications”.

[9] Li, B., “Managing Dependencies in Component-Based

Systems Based on Matrix Model”.

[10] Zimmermann, T., Nagappan, N., Herzig, K., Premraj, R.

and Williams, L., 2011. “An Empirical Study on the

Relation between Dependency Neighborhoods and

Failures”. Fourth IEEE International Conference on

Software Testing, Verification and Validation, Berlin,

21-25 March 2011, pp 347-35

[11] Leitch, R. and Stroulia, E.,2003. “Assessing the

Maintainability Benefits of Design Restructuring Using

Dependency Analysis”. Ninth International Software

Metrics Symposium, Canada , 3-5 Sept. 2003, pp 309-

322.

[12] Alhazbi, S. and Jantan, A.,2007. “Dependencies

Management in Dynamically updateable Component-

Based Systems”, Journal of Computer Science, Vol.3,

Issue 7, pp. 499-505.

[13] Vieira, M. and Richardson, D.,2002. “The Role of

Dependencies in Component Based Systems Evolution”,

Proceeding of the International Workshop on Principles

of Software Evolution,New York, USA, pp 62-65.

[14] Mahmood, S. and Lai, R. ,2006. “Analyzing Component

Based System Specification”. AWRE. Adelaide,

Australia, 2 Feb 2006,pp 1055-1076.

[15] Coyle, G.: Practical Strategy. Open Access Material.

AHP, “THE ANALYTIC HIERARCHY PROCESS

(AHP)”

[16] Forman, E.H., 2001. “The Analytic Hierarchy Process –

An Exposition”.Gill, N.S. 2006. Importance of Software

Component Characterization For Better Software

Reusability. ACM SIGSOFT Software Engineering

Notes, Vol.31 Issue1,pp 1-3.

[17] T.L. Saaty, Int. J. Services Sciences, Vol. 1, No. 1, 2008,

“Decision making with the analytic hierarchy process”.

[18] Pearson’s r, Spearman rho Other Coefficients of Note

Coefficient of Determination r2 “Correlation Coefficients

The Meaning of Correlation”.

[19] Callaghan, K., Ph.D, “The Correlation Coefficient”.

[20] Ratneshwer

and Tripathi , A. 2011. “Dependence

Analysis of Component Based Software through

Assumptions”. IJCSI International Journal of Computer

Science Issues, Vol. 8, Issue 4

