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ABSTRACT 
The classification of nonstationary signals in a noisy 

environment is a difficult task. In this paper a modified 

version of S-Transform technique has been proposed for 

classification of power signal disturbances. The S-Transform 

is a signal processing technique which is used for visual 

localization, detection, pattern classification. S-Transform has 

good ability in gathering high frequency signals and 

suppressing the lower frequency signal. The S-Transform has 

been used to extract features from the nonstationary power 

disturbance signals.The extracted features are fed as the input 

support vector machine classifier for power signal disturbance 

pattern classification. To enhance the pattern classification 

accuracy the extreme learning classifier has been proposed 

and comparison results has been presented. 
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1. INTRODUCTION 
The power signal disturbances happen due to the use of 

electronic switching devices, power interruptions, capacitor 

switching and circuit faults. These devices introduce 

variations in the phase, frequency and amplitude of the power 

system signal. The signal processing techniques such as  

Discrete Fourier Transform (DFT), Short Time Fourier 

Transform (STFT), Continuous Wavelet Transform (CWT), 

Discrete Wavelet Transform (DWT), S-Transform etc. are 

applied to nonstationary power disturbances signals for 

detection, localization and feature extraction and provides a 

powerful framework for feature extraction.DFT is insensitive 

to nonstationary signals, it shows only frequency spectrum not 

time information. STFT plays an important role by using a 

fixed window with signal, but fails to give variable resolution. 

Wavelet Transform (WT) [6] uses a variable window which 

gives good frequency resolution and poor time resolution at 

low frequency and good time resolution and poor frequency 

resolution at high frequency. The Wavelet Transform is 

sensitive to noise and does not retain the absolute phase 

information. So STFT and WT suffers from a trade-off 

between time and frequency resolutions. 

To achieve absolute phase information and improved 

resolution, S-Transform is used which combines the good 

features of STFT [2, 3] and WT. S-Transform [8] uses a 

window which is inversely proportional to the frequency and 

a Fourier Kernel. In case of S-Transform, it uses a Gaussian 

window and provides variable resolution. To have good 

frequency resolution we have modified the window width of 

S-TransformFurther the modified S-Transform is applied to 

power disturbance signals for feature extraction. The extracted 

features are fed as input to the support vector machine 

classifier for classification. From the result it is found that it 

takes more computational time and complex calculation for 

classification. In this paper we have proposed the extreme 

learning machine algorithm in which simple mathematical 

calculations are involved and the comparison results have 

been usedThis paper presents four sections such as section II 

presents the derivation of S-Transform, Section III presents 

the proposed algorithm and the reference and conclusion is 

followed by section IV and V respectively. 

2. S-TRANSFORM 
The advantage of S-Transform [8] is that it preserves the 

phase information of the signal, and also provides a variable 

resolution similar to wavelet transform [3,6].   The 

standard S-Transform of a signal x(t) is given by a 

convolution integral [8] as  
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where f is frequency , t and   are time variables.The standard 

deviation “  “(dilation parameter or width of window) is a 

function of frequency f, and in normal S-transform is define as 
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The window provides good localization in the frequency 

domain for low frequencies while providing good localization 

in time domain for higher frequencies. The disadvantage of 

the current algorithm is the fact that the window width is 

always defined as a reciprocal of the frequency. A significant 

improvement of S-Transform can be realized by defining the 

standard deviation of the window as 
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resulting in a modified S-Transform as  
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Where,  and  control the width of the window, the equation 

(4) can be written as   
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The S-Transform can be written as a convolution of two 

functions over the variable “t” 
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Let B(α, f) be the Fourier transform (from τ to α) of the S-

Transform S(τ, f). By the convolution theorem the convolution 

in the τ (time) domain becomes a multiplication in the α 

(frequency) domain: 

Now defining  
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 Where P(α, f) and G(α, f) are the Fourier transform of p(τ, f) 

and g(τ, f), so we can write 
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Thus S-Transform is the inverse Fourier Transform of the 

above equation  
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and the modified S-Transform is given by  
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Fig .1 Localization of Transient signal using S-

Transform 

 

 
 

Fig .2 Localization of Transient signal using Modified 

S-Transform 

3. PROPOSED METHOD 

3.1 Support Vector Machine 
For non-separable data, we will have alternative of mapping 

of data into higher dimensional space, as   
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This higher dimensional space is called a feature space and 

then the kernel function is given by 
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So the kernel is therefore the inner product between mapped 

pairs in the feature space. 

Therefore the RBF kernel is given by 
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 And this kernel must satisfy Mercers condition, for any

     dxxgxg 2,   is finite and    
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If a kernel which does not satisfy Mercer’s condition, there 

may exist data such that the Hessian matrix is indefinite, and 

for which the quadratic programming problem will have no 

solution. The point of estimates of the weights  N
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closely. At the same time, it reduces the complexity of 

computation by forcing the majority of the weights to 

zero.The SVM predictions is given by 
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Where  ),( ixxK  is a RBF kernel function and it is the key 

factor in SVM to satisfy the “Mercer Condition”. And   is 

an augmented kernel matrix and is given by 
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This matrix is formed by all the basis functions evaluated at 

all the training points that is with the RBF kernel functions. 

For pattern classification problem, SVM we have to maximize 
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The decision function is given by    
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Some advantages of SVM are (i) it smoothly handles the non 

linear problems (ii) good prediction accuracy and involved 

simple mathematical calculations. SVM includes VC 

dimension and structural risk minimization for classification 

accuracy. 

3.2 Extreme Learning Machine 
The conventional SVM cannot be used in regression and 

multiclass classification applications directly. This paper 

shows that the extreme learning machine (ELM) algorithm 

works for single-hidden-layer feed forward networks where 

the hidden layer weights need not be updated.ELM was 

originally developed for the single-hidden-layer feed forward 

neural networks  

 

     f(x) = h(x)β                                               (22) 

Where h(x) is the hidden-layer output corresponding to the 

input sample x and β is the output weight vector between the 

hidden layer and the output layer. One of the salient features 

of ELM is that the hidden layer  need not be tunedare the 

initial starting values. 
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Given a set of N training dataset   1,,  itxD ii  to N 

with each ix  is a d -dimensional vector and it is the 

expectation output. The output function of ELM[15] with L 

hidden neurons is represented by  
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where       xhxhxh LL ;,.......,;,1; 11  is the 

hidden feature mapping with respect to input 

 Lx  ...... 1 are randomly generated parameters of 

hidden layer and w  is the weight vector of all hidden 

neurons to an output neuron to be analytically analyzed.

)(kh  is the activation function of hidden layer. Equation (1) 

can be written as  
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where   is the  1 L hidden layer feature-mapping 

matrix, whose elements are as follows:  
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the i  th row of   is the hidden layer’s output vector for an 

instance x . Equation (2) is a linear system, which is solved 

by 

, †     TT 
1 †

                   (26) 

where 
 †  is the Moore–Penrose generalized inverse [2] of 

matrix 
  .  

 

In the proposed work features such as energy, 

standard deviation, autocorrelation, mean, variance, 

maximum and normalized values have been extracted from 

the nonstationary power signals.  

The following disturbances have been considered for 

power signal clustering. 

1. Transient 

2. Harmonic 

3. Notch 

4. Sag 

5. Spike 

6. Sag+ Harmonic 

7. Swell 

8. .Flicker, Swell+ Harmonic 

 

4. RESULTS 
 

 

 

Fig .4 Classification of power signals using SVM 

algorithm 

 

 

Fig .5 Classification of power signals using ELM 

Fig.4 shows the classification of power signals using SVM 

algorithm and it is found that the power disturbance signals 

are classified but the cluster pattern visualization is not clear 

and the computational time is 21.0875 seconds. Fig .5 shows 

the classification of power signals using extreme learning 

machine classifier and the classification of the power signal is 

clear and the computational time taken is 10.3456 seconds.  
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Sl. 

No. 

Power signal 

disturbances 

Accuracy in 

percentage (%) 

SVM ELM 

1 Transient 95.66 98.25 

2 Harmonic 92.53 96.38 

3 Notch 97.27 98.57 

4 
Sag 

96.23 97.47 

5 Spike 97.32 99.52 

6 Sag+ Harmonic 94.21 98.45 

7 Swell 94.84 97.12 

8 

Flicker, Swell+ 

Harmonic 96.88 98.43 

    

% Accuracy  95.62 98.02 

The classification accuracy is shown in the table-1. 

                              Table-1 

5. CONCLUSION 
The modified S-Transform has been applied to extract 

features and visual localization of nonstationary power 

disturbance signals. The modified S-Transform has good 

ability to localize the power signal waveforms better than the 

normal S-Transform and wavelet transform. The extracted 

features are fed as input to a support vector machine   for 

pattern classification of power signal. To improve the 

classification extreme learning machine has been applied for 

pattern classification accuracy. 

Extreme learning machine has shown higher pattern 

recognition accuracy in classifying power signal disturbances 

than the support vector machine classifier in terms of 

computational time. From the simulation results, it is found 

that the extreme learning machine classifier shows the better 

classification performance than the support vector machine 

classifier in power signal disturbance patterns classification. 
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