
International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

39

Survey on Dynamic Slicing over Distributed Computing

Chandra Prakash Gupta

Department of Computer

Science and Engineering,

 Centurion Institute of

Technology,

 Jatni, Bhubaneswar,

 Orissa 752050, India

Irfanur Rahmana
Department of Computer

Science and Engineering,

 Centurion Institute of

Technology,

 Jatni, Bhubaneswar,

 Orissa 752050, India

Rakesh Kumar Raya
Department of Computer

Science and Engineering,

 Centurion Institute of

Technology,

 Jatni, Bhubaneswar,

 Orissa 752050, India

ABSTRACT
In this paper, discussed on dynamic program slicing algorithm

which simplifies dependence and discussed the intermediate

representation of a dynamic program slicing technique a

Concurrent System Dependence Graph (CSDG) and

intermediate representation of a distributed Java program in the

form of a set of Distributed Program Dependence Graphs

(DPDG).The algorithm can run parallel on a network of

computers, with each node in the network contributing to the

dynamic slice in a fully distributed fashion. The approaches

discussed will not require any trace files to be maintained.

Another advantage of this approach is that a slice is available

even before a request for a slice is made. Analysis of the

complexities of both the algorithm for dynamic program slicing

technique and distributed dynamic slicing in Java

Keywords
Program slicing; Static slicing; Dynamic slicing; Debugging;

Object-oriented programs; Threads; Multithreading; Java;

Distributed programming; Synchronization

1. INTRODUCTION
Now a day’s, size and complexity of object-oriented

programming are increasing rapidly. This poses a formidable

difficulty to the programmer to either understand the working of

a program or debug an existing error. Development of real life

distributed object-oriented programs presents formidable

challenge to the programmer. It is usually accepted that

understanding and debugging of distributed object-oriented are

much harder compared to those of sequential programs. A

typical nature of distributed programs, lack of global states,

unsynchronized interaction among threads, multiple threads of

control and a dynamically varying number of processes are

some reason for this difficulty. An increasing amount of effort

is being spent in debugging. In order to over-come with this

situation, programmers need effective computer-supported

techniques for decomposition and dependence analysis of

programs. Program slicing is a technique for simplifying

programs by focusing on selected aspects of semantics. The

process of slicing deletes those parts of the program which can

be determined to have no effect upon the semantics of interest.

Program slicing has been found to be useful in a variety of

applications such as debugging, program understanding, testing

and maintenance. A program slice consists of the part of a

program that affect the values computed at some point of

interest referred to as a slicing criterion. Therefore a slicing

criterion consists of a pair that is (line-number, variable). The

part of a program which have a direct or indirect effect on the

values computed at a slicing criterion C are called the program

slice with respect to criterion C. the task of computing program

slices is called program slicing.

Program slicing contains two types of slices based on the input

to the program, first is static slice and second is dynamic slice.

A static slice is valid for all possible execution of a program. A

dynamic slice contains all statements that actually affect the

value of a variable at a program point for a particular execution

of the program rather than all statements that may have affected

the value of a variable at a program point for any arbitrary

execution of program. Dynamic slice is meaning full for only a

particular execution. The advantage of dynamic slicing is the

run-time handling of arrays and pointer variables. Therefore

dynamic slices are usually smaller than static slices. In this

paper we present a technique for dynamic slices for distributed

programs. The slices are constructed for use in partial re-

execution when debugging distributed programs.

2 COMPARISON
Developers have been dealing with several program slicing

techniques to over-come with the problems like bugs,

compatibility, portability and etc. Here will be comparison of

two of the program slicing technique. First, computing dynamic

slices of concurrent object-oriented programs [1] and secondly,

distributed dynamic slicing of Java programs [2].Dynamic slice

contains all statements that actually affect the value of a

variable at a program point for a particular execution of the

program rather than all statements that may have affected the

value of a variable at a program point for any arbitrary

execution of the program. [8] Whereas distributed dynamic

slice is a distributed subprogram that enables the re-execution

of only the portion of the program that is of interest with respect

to the computation of some selected values for specific input.[7]

We will be comparing the intermediate program

representations: concurrent control flow graph(CCFG) and

concurrent system dependence graph(CSDG), the marking-

based dynamic slicing (MBDS) algorithm for concurrent object-

oriented programs[1] with the intermediate program

representations: distributed program dependence graph(DPDG),

the distributed dynamic slicing(DDS) algorithm for distributed

object-oriented programs.[2]

2.1 Basic concepts and definition

Before going through the graphs and algorithms we discuss

briefly some of the features of Java. Then, we will discuss some

of the basic concepts and definitions which will be used in the

algorithm.

2.1.1. Concurrency in Java
Java is an Object Oriented Programming language. It supports

various features, concurrency is one of them. Concurrent

programming is supported by Java by the help of thread. A

thread is identified similar to the sequential program in order

that each and every thread is having beginning, running and end

phase. Since a thread itself is not a program, so therefore it

cannot be executed by its own. For this the Java support thread

programming by providing Thread class library This Thread

class library defines standard operations like start(), stop(),

suspend(),resume()and sleep(), etc.[2]

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

40

2.1.2 Communication in Java
The communication among threads by both shared memory and

message passing is provided by Java. When two or more

threads share objects are known as condition variables. In Java

programs, critical sections need to be marked with the keyword

synchronized for synchronized access to shared data. To

support synchronization among different threads, Java provides

different methods like wait(), notify(), and notifyall().Java

Thread class provides few methods like getOutputStream() and

getInputStream() for sending and receiving the messages

between the threads.java provides sockets to support distributed

programming. By the help of sockets, the client can identify the

IP address and port number of the server to whom it wants to

communicate.[2]

1 class Thread1 extends Thread{

2 BufferedReader receive_msg;

3 PrintWriter send_msg;

4 BufferedReader in=new BufferedReader(new

InputStreamReader(System.in));

5 Socket socket;

6 public void run(){

7 socket=new Socket("10.0.01.49",7514);

8 send_msg=new
PrintWriter(socket.getOutputStream());

9 receive_msg=new BufferedReader(new

InputStreamReader(socket.getInputStream()));

10 String str=in.readLine();

11 int a=Integer.parseInt(str);

12 int c,m,b=15;

13 if(a>y)

14 c=a-b;

 else

15 c=a+b;

16 send_msg.println(c);

17 System.out.println("value of c is:"+c);

18 String msg_from_server=

receive_msg.readLine();

19 int n=Integer.parseInt(msg_from_server);

20 if(n>a)

21 m=n-a;

 else

22 m=n+a;

23 System.out.println("total is:"+m);}

24 public class Client{

25 public static void main(String[] args){

26 Thread1 t1=new Thread1();

27 t1.start();}}}

Figure.1. Example Client Program

1 class Share{

2 int s;

3 boolean flag=true;

4 synchronized public void put(int c) {

5 s=c;

6 notify();

7 flag=false; }

8 synchronized public int get() {

9 if(flag==true)

10 wait();

11 return s;}}

12 class Thread1 extends Thread{

13 BufferedReader receive_msg;

14 PrintWriter send_msg;

15 Socket server_socket;

16 int y,z;

17 Share object;

18 BufferedReader o=new BufferedReader(new

InputStreamReader(System.in));

19 public Thread1(Socket request,BufferedReader in,PrintWriter

out,Share ob){

20 server_socket=request;

21 send_msg=out;

22 receive_msg=in;

23 object=ob; }

24 public void run(){

25 String message=receive_msg.readLine();

26 int x=integer.parseInt(message);

27 System.out.println("received from client is:"+x);

28 String mss=o.readLine();

29 int y=Integer.parseInt(mss);

30 if(x>y)

31 z=a-b;

 else

32 z=x+y;

33 object.put(z);

34 System.out.println("thread1:"+z);}}

35 class Thread2 extends Thread{

36 BufferedReader receive_msg;

37 PrintWriter send_msg;

38 Socket server_socket;

39 Share object;

40 BufferedReader o=new BufferedReader(new

InputStreamReader(System.in));

41 public Thread2(Socket request,BufferedReader in,PrintWriter

out,Share ob){

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

41

42 server_socket=request;

43 send_msg=out;

44 receive_msg=in;

45 object=ob; }

46 public void run(){

47 int e,g,f=10;

48 e=obj.get();

49 if(e>f)

50 g=e-f;

 else

51 g=e+f;

52 send_msg.println(g);}}

53 public class SycServer{

54 public void main(String[] args){

55 ServerSocket server_socket;

56 BufferedReader receive_msg;

57 PrintWriter send_msg;

58 Share object=new Share();

59 server_socket=new ServerSocket(7514);

60 Socket socket=server_socket.accept();

61 send_msg=new PrintWriter(Socket.getOutputStream(),true);

62 receive_msg=new BufferedReader(new

InputStreamReader(socket.getInputStream()));

63 Thread1 t1=new Thread1(socket,input,output,object);

64 Thread1 t2=new Thread2(socket,input,output,object);

65 t1.start();

66 t2.start();}}

Figure.2. Example Server Program

2.1.3 Definitions

Definition 1- Precise Dynamic Slice

A dynamic slice is said to be precise if it includes only

those sentences that essentially disturb the value of a

variable at a point for the given execution.[1][2]

Definition 2- Correct Dynamic Slice

A dynamic slice is said to be correct if it contains all the

statements of the program that affect the slicing criterion.

A dynamic slice is said to be incorrect if it fails to include

some statements of the program that

affecttheslicingcriterion. [2]

Definition 3- def(var) and defSet(var)
Let var be an instance variable in a class in an object-

oriented program. A node x is said to be a def(var) node, if

x represents a assignment for the variable var. The set

defSet(var) denotes the set of all def(var) nodes. [1]

Definition 4- use(var) node

Let var be a variable defined in a class in an object-

oriented program. A node x is said to be a use(var) node, if

it uses the variable var. [1][2]

Definition 5- recentDef(thread, var)
Let s be a def(var) node of a component program Pi. Let pi

and pj be threads in Pi. Then, recentDef(pi, var) represents

the most recent definition of the variable var available to

the thread pi. [1][2]

Definition 6- Distributed Control Flow Graph

(DCFG):
A distributed control flow graph (DCFG) G of a

component program Pi of a distributed program P = (P1, . .

. ,Pn) is a flow graph (N,E, Start, Stop), where each node n

ε N represents a statement of Pi, and each edge e ε E

represents potential control transfer among the nodes. [2]

Definition 7- Post Dominance:

Let x and y be two nodes in a (CCFG) G. Node y post

dominates node x if every directed path from x to stop

passes through y. [1][2]

Definition 8- Control Dependence:

Let G be a DCFG and x be a test (predicate) node. A node

y is said to be control dependent on a node x if there exists

a directed path D from x to y such that:

i. y post dominates every node z ≠ x in D.

ii. y does not post dominate x.

class Thread1 extends Thread{

 private SyncObject s;

 private CompObject c;

 void Thread1(SyncObject s,CompObject

 x1,CompObjectx2,CompObject x3){

 this.s=s;

 this.x1=x1;

 this.x2=x2;

 this.x3=x3;}

1 public void run(){

2 x2.mul(x1,x2);

3 s.Snotify();

4 x1.mul(x1,x3);

5 s.Swait();

6 x3.mul(x2,x2);}}

class Thread2 extends Thread{

 private SyncObject s;

 private CompObject c;

 void Thread1(SyncObject s,CompObject
 x1,CompObject x2,CompObject x3){

 this.s=s;

 this.x1=x1;

 this.x2=x2;

 this.x3=x3;}

7 public void run(){

8 s.Swait();

9 x2.mul(x1,x1);

10 s.Snotify();

11 if(x1!=x2)

12 x3.mul(x2,x1);

 else

13 x2.mul(x1,x1);}}

14 class Sample{

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

42

15 public static void main(mString[] argm){

 CompObject x1,x2,x3;

 SyncObject s;

 s.reset();

16 x1=new CompObject(Integer.parseInt(argm[0]));

17 x2=new CompObject(Integer.parseInt(argm[1]));

18 x3=new CompObject(Integer.parseInt(argm[2]));

19 Thread1 t1=new Thread(s,x1,x2,x3);

20 Thread2 t2=new Thread(s,x1,x2,x3);

21 t1.start();

22 t2.start();}}

Figure.3. Example Program

Definition 9- Data Dependence

Let x be a def(var) node and y be a use(var) node in a

DCFG G. A node y is said to be data dependent on a node

x, if there exists a directed path D from x to y such that

there is no intervening def(var) node in D. [1][2]

Definition 10- Thread Dependence

For a DCFG G, let x be the node representing the run()

statement of thread Pi. A node y is said to be thread

dependent on x, if there exists a directed path D from x to y

such that none of the nodes in D is a run node. [2]

Definition 11- Synchronization Dependence
A statement y in a thread is synchronization dependent on

a statement x in another thread, if execution of y is

dependent on execution of x due to a synchronization

operation. [1][2]

Definition 12- Communication Dependence
In a Java program two types of communication

dependencies may exist.

i. S-Communication dependence

ii. M-Communication dependence

3.INTERMEDIATE

PROGRAMREPRESENTATIONS

3.1. Distributed program

 dependence graph (DPDG)

The distributed program dependence graph (DPDG) GDiof the

component program Pi is a directed graph (NDi ; Edi) where each

node n (excepting the dummy nodes) represents a statement in

Pi. For x, y element of NDi , (y, x)element of Edi if any one of the

following holds:

a. y is control dependent on x. Such an edge is called

acontrol dependence edge.

b. y is data dependent on x. Such an edge is called a data

dependence edge.

c. y is thread dependent on x. Such an edge is called a

thread dependence edge.

d. y is synchronization dependent on x. Such an edge is

called a synchronization dependence edge.

e. y is synchronization dependent on x. Such an edge is

called a synchronization dependence edge.

Figure. 4. The DPDG of the example Client program of

Figure. 1.

A DPDG can contain nine different types of nodes. In the

following, we list these types of nodes:

a. A def(assignment) node represents a statement

defining a variable,

b. A use node represents a statement using a variable,

c. A predicate node represents a statement containing an

if() construct,

d. A run node represents a statement containing a run()

statement,

e. A notify node represents a statement containing a

notify() method call,

f. A wait node represents a statement containing a

wait() method call,

g. A getInputStream() node represents a statement

invoking a getInputStream() method,

h. A getOutputStream() node represents a statement

invoking a getOutputStream() method,

i. A C-node is a dummy node associated with the

getInputStream() node, and represents its logical

connection with the corresponding getOutputStream()

node of a remote DPDG.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

43

Figure. 5. The DPDG of the example Server program of Figure. 2.

3.2 Concurrent system dependence

graph (CSDG)

When inter-thread synchronization and communication are

present, some controls and data flows in the threads of a Java

program become interdependent. To be able to capture this

aspect, we use a dependence-based representation called the

concurrent system dependence graph (CSDG) to represent the

inter-thread synchronization and communication. CSDG is used

to slice concurrent Java programs. First, we define a concurrent

system dependence graph (CSDG) for a concurrent object-

oriented program and then describe how to construct the CSDG.

A CSDG GC of a concurrent object-oriented program P is a

directed graph (NC, EC) where each node nεNCrepresents a

statement in P. For x, y ε NC, (x, y) ε EC if one of the following

holds:

a. y is control-dependent on x. Such an edge is called a

control dependence edge.

b. y is data-dependent on x. Such an edge is calledadata

dependence edge.

c. y is synchronization-dependent on x. Such an edge is

called a synchronization dependence edge.

d. y is communication-dependent on x. Such an edge is

called a communication dependence edge.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

44

Figure. 7. The CSDG of the Sample program of Figure. 3.

Figure. 6. The CFG of the Sample program of Figure. 3.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

45

A CSDG can contain the following types of nodes:

a. Definition (assignment) node which represents a

statement defining an object.

b. Use node which represents a statement using an object.

c. Predicate node which represents a statement containing

anif() construct.

d. Notify node which represents a statement containing a

notify() method call.

e. Wait node which represents a statement containing a

wait() method call.

4. ALGORITHM

4.1 Marking-based dynamic slicing

(MBDS) algorithm
In computing dynamic slices of concurrent object-oriented

program paper, a MBDS algorithm is proposed which we will

be discussing in brief.

Before execution of a concurrent object-oriented program P, its

CCFG and CSDG are constructed statically.

We permanently mark the control dependence edges, control

dependence do not change during program execution. We

consider all the data dependence edges, synchronization

dependence edges and communication dependence edges for

marking and unmarking during run-time.

The MBDS slicing algorithm operates in three main stages:

1. Statically constructing the intermediate program

representation graph.

2. Managing the CSDG at run-time.

3. Computing the dynamic slice.

Algorithm: Marking Based Dynamic Slicing (MBDS)

Algorithm.

Input: Slicing Criterion<u,obj>

Output: Dynamic_Slice<u,obj>

Stage 1: Constructing Static Graphs

1. CCFG Construction

(a) Node Construction

(i) Create two special nodes start and stop

(ii) For each statement s of the program P do the following:

(A) Create a node s

(B)Initializethenodewithits type, list of variables used

or defined, and its scope.

(b) Add control flow edges

for each node x do the following

for each node y do the following

Add control flow edge (y,x) if control may flow from node y

to node x.

2. CSDG Construction

(a) Add control dependence edges

for each test(predicate) node u do the following

for each node x in the scope of u do the following

Add control dependence edge (u,x) and mark it.

(b)Add data dependence edges

for each node xdo the following

for each object objused at x do the

 following

 for each reaching definition u of objdo thefollowing

 Add data dependence edge (u,x) and unmark it.

(c) Add synchronization dependence edgesoreach

wait node x in thread t1 do the following

for the corresponding notify node u in thread

t2 do the following

 Add synchronization dependence edge (u,x) and

unmark it.

(d) Add communication dependence edgesor each

use(obj) node x in thread t1 do the following

for each def(obj) node u in thread t2 do the

following

Add communication dependence edge (u,x) and

unmark it.

Stage 2: Managing the CSDG at run-time

1. Initialization. Do the following before execution

of the program P

(a) Set Dynamic_Slice(u,obj) = ϕfor every object objused

or defined at every node u of the CSDG.

(b) Set recentdef(obj) = NULL for every object objof the

program P.

2. Run-time update s. Run the program and carry out the

following after each statement u of the program P is executed

 (a) Unmark all incoming marked dependence edges

excluding the control dependence edges, if any, associated

with the object obj, corresponding to the previous execution

of the node u.

 (b) Update data dependencies. For every object objused at

node u, mark the incoming data dependence edge

corresponding to the most recent definition recentdef(obj) of

the object obj.

 (c) Update synchronization dependencies. If u is a wait

node, then mark the incoming synchronization dependence

edge corresponding to the associated notify node.

 (d) Update communication dependencies. If u is a use(obj)

node, then mark the incoming communication dependence

edge, if any, corresponding to the associated def(obj) node.

 (e) Update dynamic slice for different dependencies:

 (i) Handling data dependency

(ii) Handling control dependency

(iii) Handling synchronization dependence

(iv) Handling communication dependency

Stage 3: Computing dynamic slice for a given slicing criterion

1. For every object obj, used at node u, do the following Let (d,

u) be a marked data dependence edge corresponding to the most

recent definition of the object obj, (z, u) be the marked

synchronization edge, (t, u) be the marked control dependence

edge and (c, u) be the marked communication dependence edge.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

46

Then,Dynamic_Slice(u, obj) = {d, z, t, c} U dyn_slice(d) U

dyn(z) U dyn_slice(t) dyn_slcie(c).

2. For an object obj, defined at node u, do

Dynamic_Slice(u, obj) = dyn_slice(u).

4.2 Distributed dynamic slicing

algorithm (DDS)
In distributed dynamic slicing of Java programs paper, a DDS

algorithm is proposed which we will discuss briefly.

Before execution of a distributed Java program P = (P1, . . .

,Pn), the DCFG of each component program Pi is constructed

statically. Next, we statically construct the DPDG of each

component program Pi from the corresponding DCFG. During

execution of a component program Pi, we mark an edge of the

DPDG when its associated dependence exists, and unmark the

edge when its associated dependence ceases to exist.[1]

The slicing algorithm operates in the following three main

stages:

Stage 1: Construct the intermediate program representation

graph statically.

Stage 2: Manage the DPDG at run-time.

Stage 3: Compute the required dynamic slice.

Algorithm: Distributed Dynamic Slicing (DDS) algorithm.

Input: Slicing Criterion <p,u, var>

Output: Dynamic_Slice(p,u, var)

Stage 1: Constructing Static Graphs

(1) DCFG Construction

(a) Node Construction

(i) Create two special nodes start and stop

(ii) For each statement s of the sub-program

Pido the following:

(A) Create a node s

(B) Initialize the node with its type, list of variables used or

defined, and its scope.

(b) Add control flow edgesfor each node x do

the following

 for each node y do the following

Add control flow edge (y,x) if control may flow from node

y to node x.

(2) DPDG Construction

 (a) Add control dependence edges

 for each test(predicate) node u, do

 for each node x in the scope of u, d

Add control dependence edge (u,x) and mark it.

 (b) Add data dependence edges

 for each node x, do

for each variable varused at x, do

for each reaching definition u of var, do

Add data dependence edge (u,x)

and unmark it.

 (c) Add thread dependence edges

 for each run node u, do

Add thread dependence edge (u, x) for

every node x that is thread dependent

on u and unmark it.

 (d) Add synchronization dependence edges

 for each wait node x in thread t1, do

for the corresponding notify node u in thread t2,do

Add synchronization dependence edge (u,x) and

unmark it.

 (e) Add S-Communication dependence edges

 for each use(var) node x in thread t1, do

for the corresponding def(var) node u in thread t2,

do

Add S-Communication dependence edge (u,x)

and unmark it.

 (f) Add M-Communication dependence edges

 for each getInputStream() node u, do

 Add a C-node C(u)

Add M-Communication dependence

edge(u,C(u)) and unmark it.

Stage 2: Managing the DPDG at run-time

(1) Initialization: Do the following before execution of each

of the component program Pi at the corresponding local

slicers:

 (a) Set Dynamic_slice(NULL,u, var) = ϕ for every

variable varused or defined at every node u of the DPDG.

 (b) Set recentDef(NULL, var) = ϕ for every variable

varin Pi.

 (c) Set message queue = ϕ.

(d)Set(send_TID, send_node_number,

dynamic_slice_at_send_node) = NULL for every C-node

C(x).

 (2) Runtime Updates: Run the component programs

parallely. For a component program Pi, carry out the

following at the corresponding local slicer after each

statement (p,u) of Pi is executed:

 (a) Unmark all incoming marked dependence edges to

(p,u) excluding the control dependence edges, if any,

associated with the variable var, corresponding to the

previous execution of the node u.

(b) Update data dependencies: For every variable

varused at node (p,u), mark the data dependence edge

corresponding to the most recent definition recentDef(p,

var) of the variable var.

 (c) Update thread dependencies: For every node u, mark

the thread dependence edge between the most recently

executed run node and the node (p,u).

 (d) Update synchronization dependencies: If u is a wait

node, then mark the incoming synchronization

dependence edge corresponding to the associated notify

node.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

47

(e) Update S-Communication dependencies: If u is a

use(var) node in thread t1, then mark the incoming S-

Communication dependence edge, if any, from the

corresponding def(var) node in thread t2.

 (f) Update M-Communication dependencies: If (p,u) is a

getInputStream() node, then mark the incoming M-

Communication dependence edge, if any, from the

corresponding C-node C(u).

 (g) Update dynamic slice for different dependencies:

 (i) Handle data dependency: Let {(d1,u), . .(dj,u)} be

the set of marked incoming data dependence edges to

u in thread p. Then, Dynamic_Slice(p,u) = {(p,d1), . . .

, (p,dj)} U Dynamic_Slice(p,d1) U _ _ _ U

Dynamic_Slice(p,dj), where d1,d2, . . .,djare the initial

vertices of the corresponding marked incoming edges

of u.

(ii) Handle control dependency: Let (c,u) be the

marked control dependence edge. Then,

Dynamic_Slice(p,u) = Dynamic_Slice(p,u) U {(p, c)}

UDynamic_Slice(p, c).[1]

(iii) Handle thread dependency: Let (t,u) be the

marked thread dependence edge. Then,

Dynamic_Slice(p,u) = Dynamic_Slice(p,u) U {(p, t)}

U Dynamic_Slice(p, t).

(iv) Handle synchronization dependency: Let u be a

notify node in thread p and s be a wait node in thread

p1. Let (s,u) be the marked synchronization

dependence edge. Then, Dynamic_Slice(p,u) =

Dynamic_Slice(p,u) U {(p1, s)} U Dynamic_Slice(p1,

s).

 (v) Handle S-Communication dependency: Let u be a

use(var) node in thread p and (z,u) be the marked S-

Communication dependence edge from the

corresponding def(var) node z in thread p1. Then,

Dynamic_Slice(p,u) = Dynamic_Slice(p,u) U {(p1, z)}

U Dynamic_ Slice(p1, z).

(vi) Handle M-Communication dependency: Let u be

a getInputStream() node and (u,C(u)) be the marked

communication dependence edge associated with the

corresponding C-node C(u). Then,

Dynamic_Slice(p,u) = Dynamic_ Slice(p, u) U

{(p,C(u))} U Dynamic_Slice(p, C(u)).

5. COMPLEXITY ANALYSIS
Here we will be discussing on the space and time complexities

of the MBDS algorithm of computing dynamic slices of

concurrent object-oriented programs paper and DDS algorithm

of distributed dynamic slicing of Java programs

5.1. MBDS Algorithm

5.1.1. Space Complexity:
let assume, P be a concurrent object-oriented program with n

statements. The CCFG and CSDG constructed in stage 1 are

directed graphs on n nodes. [1]

Note, the graph of n number of nodes with optionally marked

edges requires O(n2) space.

So, the space required for the CCFG and CSDG of P program

with optionally marked edges is O(n2).

Some of the additional run-time spaces for computing the

intermediate graph representation are required:

To store Dynamic_Slice(u,obj) for every node u of CSDG,

at most O(n2) space is required.

To store recentdef(obj) for every objectobj of P, at most

O(n) space is required.

So the space complexity of the MBDS algorithm is calculated

to be O(n2), where n is the number of executable statements in

the program.

5.1.2. Time complexity
To calculate the time complexity of the MBDS algorithm, two

factors has been considered the first one is the execution time

required for the run-time manipulations of the CSDG and the

second one is the time required to look up the data structure

Dynamic_slicefor extracting the dynamic slice, once the slicing

command is given.

The complexity of set union is known to be O(mn)[10]. So, the

worst case time complexity of MBDS algorithm for computing

the dynamic slice, for the whole program is O(mn).

5.2. DDS Algorithm
5.2.1 Space Complexity
The space required for the DPDG of a component program Pi

having ni statements is O(ni2). It is been assumed that the

number of statements of a component program is bounded by

the total number of statements in the whole distributed program.

The space required for all the DPDG of the distributed program

P having N statements is O(N2).

Some of the additional run-time spaces for manipulating the

DPDG are required:

The space required for Dynamic_Slice(p, u, var) is O(N2),

where N is the total number of statements in P.

It us been assumed that the number of variables present (v) is

less than the number of statements (ni). So, the DDS algorithm

will require O(ni
2) space to store thererecentDef(thread, var) of

all the variables

Since the space complexity of the DPDG and the run-time

storage requirements is O(N2), so the space complexity of the

DDS algorithm is O(N2). Where, N is the total number of

statements of the distributed program P.

5.2.2. Time Complexity:
To calculate the time complexity of the DDS algorithm, two

factors has been considered marking up the time required to

compute a slice.

1- The execution time required for the run-time

manipulation of the DPDG.

2- The time required to look up the data structure

Dynamic_Slice for extracting the dynamic slice, once the

slicing command is given.

The run-time complexity of the DDS algorithm for computing

the dynamic slice for entire execution of the distributed

program P is O(N2S), where S is the length of execution of the

component program P.

6. CONCLUSIONS
We discussed a technique for computing dynamic slices of

distributed Java programs. We hadcompared the concept of

Concurrent System Dependence Graph (CSDG) and distributed

program dependence graph (DPDG) as the intermediate

program representation used by theintroduced slicing

algorithms. The algorithms are named as Marking-based

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC 2015)

48

dynamic slicing (MBDS) and Distributed dynamic slicing

(DDS) algorithm. These algorithms are based on marking and

unmarking the edgesof the DPDG and CSDG as and when the

dependencies arise and cease at run-time. To achieve fast

response time, the DDS algorithm runs on several machines

connected through a network in a distributed fashion. The DDS

algorithm addresses the concurrencyissues of Java programs

while computing the dynamic slices. It also handles the

communication dependencyarising due to objects shared among

threads on same machine and due to message passing among

threads on different machines.The importantadvantage of the

DDS algorithm is that when a slicing command is given, the

dynamic slice is extracted immediately by looking up the data

structure Dynamic_Slice, as it is already available during run-

time. Although the dynamic slicing technique DDS is

introduced for Java programs, the technique can be easily

adapted to other object-oriented languages like C++.

7. REFERNCES
[1] Computing dynamic slices of concurrent object-oriented

programs. Durga P. Mohapatra, RajibMalland Rajeev

Kumar.

[2] Distributed dynamic slicing of Java programs. Durga P.

Mohapatra, Rajjev Kumar, Rajib Mall, D. S. Kumar and

MayankBhasin.

[3] E. Duesterwald, R. Gupta, M. Soffa, Volume

757, 1993, pp 497-511,Distributed slicing and partial

re-execution for distributed programs.

[4] Mund, G., Mal , R., Sarkar, S., 2002. An efficient

dynamic program slicing technique. Information and

Software Technology 44, 123–132.

[5] Goswami, D., Mall, R., 2002. An efficient method for

computing dynamic program slices. Information

Processing Letters 81, 111–117.

[6] Distributed slicing and partial re-execution for

distributed programs. E. Duesterwald, R. Gupta,M.

Soffa.

[7] Dynamic Program Slicing. Hiralal Agrawal, Joseph R.

Horgan.

[8] D.P. Mohapatra et al. / The Journal of Systems and

Software 79 (2006) 1661–1678 1669.

[9] G.B. Mund, R. Mall, S. Sarkar, Computation of

intraprocedural dynamic program slices, Information and

Software Technology 45 (2003) 499–512.

IJCATM : www.ijcaonline.org

http://link.springer.com/search?facet-author=%22E.+Duesterwald%22
http://link.springer.com/search?facet-author=%22R.+Gupta%22
http://link.springer.com/search?facet-author=%22M.+Soffa%22
http://link.springer.com/search?facet-author=%22E.+Duesterwald%22
http://link.springer.com/search?facet-author=%22R.+Gupta%22
http://link.springer.com/search?facet-author=%22M.+Soffa%22
http://link.springer.com/search?facet-author=%22M.+Soffa%22

