
International Journal of Computer Applications (0975 – 8887)
International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

73

DART Evolved for Web - A Comparative Study with

JavaScript

Sabyasachi Mohanty
Department of Computer Sc. &Engg.

Centurion University of Technology & Management,
Bhubaneswar, India

Smriti Rekha Dey
Department of Computer Sc. &Engg.

TempleCity Institute of Technology & Engineering,
Odisha, India

ABSTRACT
We live in a data centric world with the availability of
information on web to satisfy the two folded objectives of
secured easy access and quick processing. The web solutions,
which connect users to information, are well equipped to
provide the best facility to its users and web browsers as a
platform, are used to deliver services offered by the large and
complex applications. JavaScript (JS) is the most popular and
pervasive web scripting language because it is supported by all
the web browsers. But, new alternatives are always evaluated
to overcome its shortcomings. With the advancement in
technology, programming languages have also added the new
computing strategies. One such introduced by Google is Dart.
With the latest set of programming features, it is such a
programming language which is designed to utilize direct
hardware capabilities just like C/C++ along with maximum
utilization of CPU. The idea discussed in this paper is that the
use of Dart as a Programming Language will definitely
enhance the user experience. Apart from its use in business
applications, it has the potential to revolutionize the application
domains such as 3D Graphics, Cryptography, Vector Math
Computation, Medical Image Processing, etc., where the
volume of data to process is very high.

General Terms
Emerging Trends in Computing, Programming Language

Keywords
Dart, JavaScript, Dart VM, dart2js, SIMD, Web Browser

1. INTRODUCTION
Today, web is everywhere. It means technology enables web
access for anyone, anytime, anywhere, using any device - from
hand held smart mobile devices to interactive television sets to
traditional desk-tops. A web browser on any device can make
the web pages, full of data and information, accessible with
internet connectivity. No installation or update procedures
make the user experience very pleasant [4].

Several languages are used for server side programming but
with browser at the client side, we are limited to JavaScript for
the last two decades. Though Flash was one of its competitors,
but due to its high memory usage, incompatibility with devices
like iPads, iPhones etc., and unsuitability for Search Engine
Optimization, JavaScript, despite its drawbacks, became the
widespread web scripting language.

Because JavaScript is error prone and errors are difficult to
spot, it causes problems to programmers. Even though many
JavaScript based libraries and frameworks such as JQuery,
Backbone.js, CanJS, Node.js, etc., are available, still
development and maintenance of large scale, complex web
applications are not easy. To address these issues, new
programming languages are emerging to meet the demands of
recent computing [5] and communication developments. Dart,

as a structured language, is ideal for building rich featured,
heavy browser based web applications.

The goal of this paper is to evaluate different problems of
JavaScript which can be solved by Dart. To achieve this, a
comparative study of language features and performance is
made.

2. LIMITATIONS OF JAVASCRIPT
Alongside the beauty of JavaScript is its unpleasantness in
debugging, performance across browsers, and security on client
devices. With the advent of new programming languages like
Dart, the drawbacks of JavaScript can be overcomed by the
programmers. The major shortcomings that are associated with
JavaScript are as follows.

 Lack of Modularity: [2] JavaScript does not follow the
concepts of namespace and import statement. Here since
the code is divided into libraries which again depend on
other libraries, the developers need to know all the
interdependencies beforehand. This makes the job of a
programmer difficult.

 No Access Modifiers: JavaScript does not have any of
the Access Modifiers which helps in setting the level of
access to the members.

 No Type Systems: Explicitly declaring the types of
variables are not mandatory. A variable can store with
any data type say first stores a string and later an integer.

 No Compilation: As there is no compiler, programmers
cannot take the advantage of checking errors or identify
misuse of data types during compilation time.

 Lack of Generics: JavaScript can store different types of
values in a single List. But with Generics a List can store
data of only one data type.

It is really a challenging task to develop a large scale
application in JavaScript because it lacks many favorable
features. Absence of features like build-in module system will
definitely make the task of a programmer difficult. There is no
particular method to ensure that the third party libraries don’t
conflict with each other in one application. When there are no
boundaries between modules and everything is dependent on
everything then to avoid producing festering pile of messy code
developers should adhere to a strict coding discipline. This will
definitely increase the cost of software development.

3. DART AND ITS COMPARISON WITH

JAVASCRIPT
Dart is a new platform for scalable web app engineering [1]. It
is an open source, structured programming language for
creating complex, browser-based web applications. The
applications created in Dart can be executed either by using a
browser that directly supports Dart code or by compiling your
Dart code to JavaScript. Dart has a familiar syntax, and it is
class-based, optionally typed, and single threaded. It has a

International Journal of Computer Applications (0975 – 8887)
International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

74

concurrency model called isolates that allows parallel
execution. Dart code can be converted to JavaScript with
dart2js compiler. This means Dart apps can run across all
modern web browsers. It can be hosted in the Dart VM (Dart
Virtual Machine), allowing both the client and the server parts
of applications to be coded in the same language [3]. In
addition to running Dart code in web, Dart code can also be run
on the command line.

The useful features [9] of the Dart programming language that
enables the programmer to build the next generation web apps
are

 Easy to Learn: Developers from any domain can learn
Dart quickly. It is an object oriented language with
classes, single inheritance, top-level functions, lexical
scope, and a familiar syntax.

 Optional Static Types: Dart supports types without
requiring them. Darts optional types are static type
annotations leading to´ better warning and error messages
along with the requirement of fewer comments to
document the code.

 Innocent until proven guilty: Dart minimizes the situations
that result in compilation-time error. Warnings are the
conditions that do not stop the program from running.

 Lexical Scope: Visibility of variables are defined by the
program structure.

 Real Classes baked into the Language: Dart uses classes
naturally.

 Top-level functions: Programmers can define functions at
the top level, outside of any class. This makes
composition of library to feel more natural.

 Classes have implicit interfaces: Elimination of explicit
interfaces simplifies the language.

 Named Constructors: Developers are free to assign
constructor names, which helps with readability.

 Factory Constructors: A factory constructor can return a
singleton, an object from a cache, or an object of a sub-
type.

 Isolates: Dart supports safe, simple concurrency execution
of code with isolates. Communication happens by sending
messages over ports.

 Dart compiles to JavaScript: Dart has been designed to
compile to JavaScript using dart2js so that apps developed
in Dart can run across all modern web.

 Dart runs in the client and on the server: Dart can be used
for full end-to-end apps. The Dart virtual machine (Dart
VM) can be integrated into a web browser.

 Strong tooling: The Dart ships with an editor, to write,
launch, and debug apps. It helps with code completion,
detection of potential bugs, code navigation, quick fixes
and refactoring.

 Libraries for reusability: Wide array of libraries include
built-in types and fundamental features such as
collections, dates and regular expressions. Dart has built-
in library support for files, directories, sockets and even
web servers. Programmers code import a library, and
libraries can be re-exported leading to code sharing.

 Scalable: Dart scales from small scripts to large and
complex apps. Programs can start small and grow over
time with the support for top-level functions, classes and
libraries.

 String Interpolation: Building strings with variables makes
the life of programmer easy.

 noSuchMethod: Dart is a dynamic language, and it has the
facility to make arbitrary method calls with
noSuchMethod().

 Generics: Dart’s generics are more simple.

 Support of code sharing: Dart package manager (pub) and
features like libraries, can locate, install and integrate code
across the web.

 Open source: Dart was born for the web.

Table 1. Feature Comparison of Dart and JavaScript

Features Java-

Script

Dart Summary

Static Type

Checking

- Static typed languages are

those in which type

checking is done at

compilation-time

Classes - .

Interfaces - .

Modules - .

String In-

terpolation

- String that is built by

inserting a string or

replacing a variable with its

value

Intellisense - Intelligent code sense or

auto completion of code

Code

Brevity

- If the number of lines of

code is reduced

Better

Speed

- Improvement in the

performance of the code

1 double scalar_average(Float32List data) {
2 var sum = 0.0;
3 for (vari = 0; i<data.length; i++) {

4 sum += data[i];

5 }

6 return sum / data.length;

7 }

1 double simd_average(Float32x4List data) {
2 var sum = new Float32x4.zero();
3 for (vari = 0; i<data.length; i++) {
4 sum += data[i];
5 }
6 var total = sum.x + sum.y + sum.z + sum.w;
7 return total / (data.length * 4);
8 }
Figure 1. Scalar (top) and SIMD (bottom) implementations

of an algorithm to find the average of an array of numbers

Table 1 shows the feature comparison of Dart and JavaScript.

4. SIMD PROGRAMMABILITY MATTER

TO THE WEB
Many algorithms can be executed faster by taking advantage of
SIMD co-processors. A simple example is the averaging of an
array of numbers. The algorithm adds all the data items and
computes the average by dividing by the number of data items.
The top of Figure 1 shows a scalar implementation. The bottom
of the figure shows a SIMD implementation. This algorithm
can trivially take advantage of SIMD co-processors by adding
4 numbers at the same time.

The bulk of the work is done in parallel and only after exiting
the loop does the program need to fall back to scalar
computation when computing the final sum and average.

International Journal of Computer Applications (0975 – 8887)
International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

75

Table 2. Comparison of Double and Integer

Operation Double Integer Double

Slowdown

Multiply 6 2 3x

Addition 4 1 4x

Load 2 2 N/A

Store 2 2 N/A

If the Float32x4 type were available to web programmers and
the optimizing compiler is successful in generating code that is
free of memory allocation and allows for temporary values to
stay in CPU registers, the algorithm can be sped up by 500%
[6].

5. COMPUTING FEATURE OF DART
Dart is designed to run fast by being less permissive. The new
Virtual Machine (VM) opens up new possibilities with SIMD
(Single Instruction Multiple Data). This SIMD programming
model is designed to give direct control to the programmer.

5.1 New Types
Dart introduces three new 128-bit wide value types: Float32x4,
Int32x4, and Float64x2. Each value type stores scalar values in
multiple “lanes”. For example, Float32x4 has four single
precision floating point numbers in lanes labelled: x, y, z, and
w. Each instance is immutable and all operations result in a
new instance.

5.2 Distinction between Integer and Double

Numbers
JavaScript only has double. So all operations involve double
and in computation point of view, Double arithmetic operation
is slower than integer arithmetic operation. This difference is
very high for mobile processors. Dart has both double and
integer. So it gives choice to developers. Table 2 shows the
difference.

5.3 Primitive Operations
Float32x4 supports standard arithmetic operations (+, -, *, /) as
well as approximate square root (sqrt), reciprocal square root
(rsqrt), and reciprocal. It also supports absolute value (abs),
minimum (min), maximum (max), and clamp operations [6].
All of these operations are performed for each lane. For
example, the minimum of two Float32x4 is the Float32x4 with
the minimum of each individual lane.

5.4 Type Conversion
Value cast operations between Float32x4 and Int32x4 as well
as Float32x4 and Float64x2 are available [6]. Also, Bit-wise
cast operations between Float32x4, Int32x4, and Float64x2 are
present.

5.5 Comparison and Branchless Selection
The result of comparison of SIMD values is not a single
boolean value but a boolean value for each lane [6]. Consider
the example of computing the minimum value of two values.
Figure 2 shows the scalar and SIMD algorithms written in
Dart.

The comparison results in an Int32x4 value with lanes
containing 0xFFFFFFFF or 0x0 when the lane comparison is
true or false respectively. The resulting mask is used to pick
the desired value.

5.6 Lane Access
Direct access to each lane of a Float32x4 is done by accessing
the x, y, z, or w instance properties. An example is shown in
the average algorithm.

1 numscalar_min(num a, num b) {
2 if (a <= b) {

3 return a;

4 }

5 return b;

6 }

1 Float32x4 simd_min(Float32x4 a, Float32x4 b) {
2 Int32x4 mask = a.lessThanOrEqual(b);
3 return mask.select(a, b);
4 }

Figure 2. The scalar (top) and SIMD (bottom) minimum

function

1 void copy(Float32x4List destination,
2 Float32x4List source,
3 int n) {
4 for (vari = 0; i< n; i++) {

5 var x = source[i]; // Load.

6 destination[i] = x; // Store.

7 }

8 }

Figure 3. The copy function copies an array of SIMD values

Because each instance is immutable it is not possible to change
the value stored in the lanes. Methods, for example, withX
allow for constructing new instances that are copies of an
existing instance with an individual lane value changed [6]. For
example, in Dart:

var x = new Float32x4(1.0, 2.0, 3.0, 4.0); var y =

x.withX(5.0);

5.7 Shuffling
Shuffling the order of lanes is also available [6]. Reversing the
order of the lanes, in Dart:

Float32x4 reverse(Float32x4 v) {

returnv.shuffle(Float32x4.WZYX);
}

The shuffle method uses an integer mask.

5.8 Memory I/O
Float32x4List, Int32x4List, and Float64x2List offer contiguous
storage of Float32x4, Int32x4, and Float64x2 values. These
lists do not store instances but their 128-bit payloads [6].
Figure 3 shows loading and storing SIMD values in Dart. Note
that on the load on line 5 a new instance of Float32x4 is
constructed.

6. DART VIRTUAL MACHINE
The Dart Virtual Machine (Dart VM) is the core of the Dart
language [3]. One use is as an executable on the command-line
VM, such as to start up an HTTP server or run a script, or any
other console-based use of Dart. Another use is to embed it in
another application, such as Dartium.

Dart VM stretches the performance envelop and makes new,
magical experiences possible.

International Journal of Computer Applications (0975 – 8887)
International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

76

6.1 Unoptimized Code
When a function is first compiled by the Dart VM the
generated code is completely generic. Every method call is
looked up in the receiving object’s class’s function table. Every
temporary value is allocated in the heap as a full object under
control of the Garbage Collector (GC) [6].

Figure 4.A call-site’s type-cache.

Figure 5.A boxed SIMD value.

6.2 Mapping from High Level to Low Level
The programming model is high level with each operation
requiring a method call on a heap allocated object and results
in a new heap allocated object holding the resulting value.
Each value is immutable and storage of temporary values
cannot be reused. When optimized code is generated, the
overhead of the high level programming model can be
removed. Almost all method calls will be mapped directly to a
single CPU instruction. Instances will be stored directly inside
CPU registers avoiding the cost of memory allocation and
object creation.

6.3 Type Collection
The unoptimized code collects important type information that
is used later by the optimizing compiler. At each method call
the unoptimized code maintains a cache mapping from receiver
class id to address of the class’s corresponding function, as
shown in Figure 4.

6.4 Boxed and Unboxed Values
The Dart compiler makes a distinction between boxed and
unboxed values. Boxed values are pointers to objects which are
allocated in the heap whose life cycle is managed by the
Garbage Collector (GC). Unboxed values are stored in CPU
registers. Operations on unboxed values are much more
efficient because the values are already contained in CPU
registers. Figure 5 shows the in-memory layout of an instance
of Float32x4. The object header contains information used for
type collection and GC [6].

6.5 Inlining
Both the Dart VM and the JavaScript VMs make heavy use of
inlining to avoid method call invocation and unnecessary
boxing of values. The first form of inlining is that the bodies of
small functions are copied into the calling function, replacing
the method call. The second form of inlining is replacement of
runtime provided functions with compiler intermediate
representation (IR) instructions.

6.6 Optimized Code
The optimized code first validates the class of each input value.
After being validated the values are unboxed directly into CPU

registers and the remaining operations are performed directly
in CPU registers with no memory I/O. The last step is to box
the result so that it can be returned.

Figure 6.Tree Shaking.

7. DART2JS: COMPILING TO

JAVASCRIPT
The dart2js tool is used to compile Dart to JavaScript. In other
words, it produces a .js file that contains the JavaScript
equivalent of Dart code at application level. For every feature
of Dart, there is a corresponding chunk of JavaScript Code that
gets included in the compiled output and the JavaScript
generated includes shim code for the various Dart libraries [7].
The referenced Dart libraries are also added into the resulting
JavaScript. If any error is detected during compilation, it helps
the programmer by identifying where the errors occur.

In addition to all these, Dart has also implemented features
enlisted below that reduces the execution time of the generated
JavaScript Code and provides better performance than that of
handwritten JavaScript.

 Minification of Code: When compiling to JavaScript,
dart2js generates the smallest amount of bytes.
Advantages of less bytes are smaller bandwidth bills,
and faster load times, and longer battery life.

 Tree shaking: It is a technique to “shake” off unused
code. Dart tools support tree shaking. As shown in the
Figure 6, only the functions that are actually used are
included in the generated output.

 Dead code elimination: During compile time,
configuration values from the environment can be
evaluated and potentially result in eliminating dead
codes from the generated output.

8. PERFORMANCE
Performance can be judged with the standardized benchmarks.
The point of the benchmark is to have an easy to run,
reproducible stress test of the performance-sensitive algorithm.
Google also used to promote new benchmark tests comparing
Dart with JavaScript on four benchmarks (DeltaBlue,
FluidMotion, Richards, and Tracer) [1]. Seth Ladd pointed out
the Richards benchmark in particular, where he said Dart 1.1
ran 25 percent faster JavaScript [8].

In this section, we present a set of benchmark results for our
benchmark programs. We ran our benchmarks on the Dart VM,
V8, and JavaScript implementations. We used a Windows 7

International Journal of Computer Applications (0975 – 8887)
International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

77

(32bit) system with an Intel CPU (Intel(R) Core(TM) i5-
3210M CPU @ 2.50GHz, 2501 Mhz, 2 Core(s), 4 Logical
Processor(s)).

Table 3. Benchmark Comparison results for Dart on

Chromium

Benchmark Dart

(Scalar)

Dart (SIMD)

Average 17 4

Matrix Multiplication 111 18

Vector Transform 26 5

Mandelbrot 446800 163615

Table 4. Benchmark Comparison results for Dart and

JavaScript V8 Engine

Benchmark Java-Script Dart

Average 20 21

Matrix Multiplication 113 112

Vector Transform 34 32

Mandelbrot 450600 450700

We ran each program with an interval of at least 5 seconds,
then calculated the time consumed by a single iteration by
dividing the result withthe number of iterations. We report
absolute times in microseconds for both Dart and JavaScript
benchmark implementations.
To cover different application domains such as 3D Graphics,
Cryptography, 2D Image Processing, we have identified a
small set of common operations as Benchmark Programs to
showcase the impact of Dart on the Browsers. The benchmarks
covered so far are listed as follows:

 Average : Compute the average

 Matrix Multiplication : Multiply 2 4X4 matrix

 Vector Transform : Vector Transformation 4 element
vector

 Mandelbrot : Represent Mandelbrot set

Table 3 shows results of benchmark comparison for Dart
executed with Chromium on our Intel machine and windows
operating system. The time is reported in microseconds for
both scalar and SIMD versions of the benchmark.

Table 4 shows results of benchmark comparison for Dart and
JavaScript V8 Engine on the same Intel machine with windows
operating system.

9. CONCLUSION
This paper explores the the design features of Dart. The results
from its comparison with JavaScript, indicate that it has the
potential to lead the world as a general-purpose language to
build many different types of real-time applications. With
concepts of classes, interfaces and modules, better IDE i.e.,
own editor and browser (Dartium) for software development,
easy code debugging, a cleaner DOM API and libraries,
developing rich featured client side web applications is easy. In
addition to all these and improved computing capability with
SIMD programmability, Dart really shines, when building
complex web applications. Projects with the concept of data-
driven decision making such as E-Governance, Enterprise
Resource Planning, Gene Analysis, etc., can be highly
benefited from Dart.

10. ACKNOWLEDGMENT
The results of this paper were obtained during our Ph.D.
studies. We would like to express deep gratitude to Prof. (Dr.)
Amit Kumar Mishra, for his valuable suggestions and technical
directions.

11. REFERENCES
[1] Dart: Structured web apps, February 2014,

https://www.dartlang. org/.

[2] Aansa Ali, Evaluation and comparison of alternate

programming languages to javascript, Research Conference

in Technical Disciplines (2013), 90–95,

http://www.rcitd.com.

[3] Chris Buckett, Dart in action, Manning, 20 Baldwin Road,

PO Box 261, Shelter Island, NY 11964, 2013, ISBN

9781617290862.

[4] Karan Dhiman and Benson Quach, Google’s go and dart:

parallelism and structured web development for better

analytics and applications, Proceedings of the 2012

Conference of the Center for Advanced Studies on

Collaborative Research (CASCON ’12) (2012), 253–254,

http://dl.acm.org/citation.cfm?id=2399809.

[5] Sixto Ortiz Jr., Computing trends lead to new programming

languages, the IEEE Computer Society 45 (2012), no. 7,

17–20, doi:10.1109/MC.2012.229.

[6] John McCutchan, HaitaoFeng, Nicholas D. Matsakis,

Zachary Anderson, and Peter Jensen, A simd programming

model for dart, javascript, and other dynamically typed

scripting languages, Workshop on Pro-gramming Models

for SIMD/Vector Processing (WPMVP ’14) (2014),

http://dx.doi.org/10.1145/2568058.2568066.

[7] Chris Strom, Dart for hipsters, The Pragmatic

Programmers, 2012, ISBN-13: 978-1-937785-03-1.

[8] Rob Marvin (SD Times), Google releases dart 1.1 with new

features and improved tools, January 2014,

http://sdt.bz/content/

article.aspx?ArticleID=67599&page=1.

[9] Kathy Walrath and Seth Ladd, Dart up and running, O

Reilly Media, 1005 Gravenstein Highway North,

Sebastopol, CA 95472, 2012, ISBN 978-1-449-33089-7.

https://www.dartlang.org/
https://www.dartlang.org/
https://www.dartlang.org/
https://www.dartlang.org/
http://sdt.bz/content/article.aspx?ArticleID=67599&page=1
http://sdt.bz/content/article.aspx?ArticleID=67599&page=1
http://sdt.bz/content/article.aspx?ArticleID=67599&page=1
http://sdt.bz/content/article.aspx?ArticleID=67599&page=1

