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ABSTRACT 

Data dependencies create hurdles in exploiting ILP among 

instructions. To overcome them, data value predictors are 

used which guess instructions’ result before it is actually 

executed. Thus, future instructions which depend on the 

outcome of that instruction executes sooner. But, since Value 

Prediction accuracy is very crucial in determining the amount 

of parallelism that can be exploited, Confidence estimation is 

used along with it to lessen the value prediction misprediction 

penalty by guessing whether or not to use a value prediction 

result. Previous confidence estimators were based on 

perceptrons which had the limitation of learning only linearly 

separable functions,[2, 24]. But sometimes linear 

inseparability may arise when a correct prediction on a past 

instruction causes the current instruction to predict incorrectly 

[25]. As Support Vector Machines belong to a family of 

generalized linear classifier and can be interpreted as 

extension of perceptron, they are both linear and non linear 

classifiers and are computationally more efficient than 

perceptrons. Thus, we propose a confidence estimator using 

SVM’s in which the prediction accuracy of previous 

instructions is used to estimate the confidence of current 

prediction and decide based on its results whether or not the 

prediction is likely to be correct.  The classification algorithm 

of SVM is implemented using MATLAB platform, and its 

novel learning methods have been applied on different data 

sets having two classes.  

Keywords 

Value Prediction, Confidence Estimation, SVM. 

1. INTRODUCTION 
Extensive research has been done in the area of data value 

prediction for overcoming these data dependencies [7, 8, 9, 

10, 11,17,18,20 and 21]. The goal of data value prediction is 

to guess the outcome of an instruction before it is actually 

executed, allowing future instructions that depend on its 

output to be executed earlier. Data dependency is a normal 

situation in which the data that the instructions use depend 

upon the data created by other instructions, or the data is 

stored in locations which are used by other instructions. This 

problem is describes below. Let us consider two instructions: 

1. Add r1, r2, r3  // r1=r2+ r3 

2. Sub r3, r1, r2 

Instruction 1 produces a result r1, which is the sum of r2 and 

r3. Instruction 2 uses the result of instruction1 , i.e. r1 and 

calculates the difference r3. Thus here, Instruction 2is said to 

be data dependent on Instruction 2, because it uses 

Instruction1’s result. Since r1 is not known until Instruction 1 

executes, they can’t be executed in parallel.  Data value 

predictors look for patterns among data produced in different 

iterations of static instructions. Accurate prediction can be 

attained when the repeated outcomes of a particular 

instruction follow easily perceptible patterns. 

Accuracy is a major problem with data value prediction. Even 

in most advanced data predictors, 30% to 60% of the 

predictions are incorrect [17]. If an instruction is wrongly 

predicted, and that incorrect prediction is used for next data 

dependent instructions, then all of those instructions must be 

executed again. This causes high misprediction penalty. Thus 

in these cases, it is better not to predict than to mispredict. 

This is the reason why most data value predictors use a 

confidence estimator which determines whether or not a 

prediction for a particular instruction is likely to be correct or 

not[13]. If the estimator has high confidence in a prediction, 

then the predicted value is used by the data dependent 

instructions. Else, the prediction is discarded and the 

dependent instructions wait for the current instruction to be 

actually executed. 

A typical confidence estimator tries to determine the accuracy 

of a prediction instructions predictability) by looking at 

whether the last several predictions for that instruction were 

correct or not. If they were all correct then naturally the next 

predictions should also be correct. But if the instruction was 

recently mispredicted, then the new prediction is also not 

trusted. But this is a localized approach; i.e. it doesn’t 

consider the effect of other surrounding instructions on the 

current instruction which is to be predicted. So, there exist 

correlations between predictability of different instructions, 

especially if those instructions are data dependent [17]. 

Hence, an instructions prediction outcome may be correct 

only if a certain prior instructions prediction outcome was 

correct. 

However, in order to make use of other instructions prediction 

accuracies, we must determine which surrounding instructions 

affect the current instruction. It is found that these 

predictability correlations tend to follow linearly separable as 

well as linearly inseparable patterns [25].  

As Support Vector Machines belong to a family of 

generalized linear classifier and can be interpreted as 

extension of perceptron. They are both linear and non linear 

classifiers and are computationally more efficient than 

perceptrons. Thus, we propose a confidence estimator using 

SVM’s in which the prediction accuracy of previous 

instructions is used to estimate the confidence of current 

prediction and decide based on its results whether the 

prediction is likely to be correct or not.   

We have compared perceptron and SVM and the results show 

better accuracy in prediction. In this paper, we introduce some 

basic concepts of SVM, kernel function selection and model 

selection (parameter selection) of SVM. In section 7 we detail 
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the experimental results. Finally, we have some conclusions in 

section 8. 

2. SUPPORT VECTOR MACHINES 
SVMs are set of related supervised learning methods used for 

classification and regression [31]. They belong to a family of 

generalized linear classification. A special property of SVM is 

SVM simultaneously minimize the empirical classification 

error and maximize the geometric margin. So SVM called 

Maximum Margin Classifiers. SVM is based on the Structural 

risk Minimization (SRM). SVM map input vector to a higher 

dimensional space where a maximal separating hyperplane is 

constructed. Two parallel hyperplanes are constructed on each 

side of the hyperplane that separate the data. The separating 

hyperplane is the hyperplane that maximize the distance 

between the two parallel hyperplanes. An assumption is made 

that the larger the margin or distance between these parallel 

hyperplanes the better the generalization error of the classifier 

will be [31].  

We consider data points of the form 

{(x1,y1),(x2,y2),(x3,y3),(x4,y4)……….,(xn, yn)}. Where   yn=1 / 

-1 , a constant denoting the class to which  that  point  xn  

belongs.  n  =  number  of sample. Each xn is p-dimensional 

real vector. The scaling is important to guard against variable 

(attributes) with larger variance. We can view this Training 

data, by means of the dividing (or seperating) hyperplane, 

which takes the form of, 

w . x + b = 0                      ……... (1)  

Where b is scalar and w is p-dimensional Vector. 

The vector w points perpendicular to the separating hyper 

plane. Adding the offset parameter b allows us to increase the 

margin. Absent of b, the hyperplane is forced to pass through 

the origin, restricting the solution. As we are interesting in the 

maximum margin, we are interested SVM and the parallel 

hyperplanes. Parallel hyperplanes can be described by 

equations, 

w.x + b = 1 

w.x + b = -1 

If the training data are linearly separable, we can select these 

hyperplanes so that there are no points between them and then 

try to maximize their distance. By geometry, we find the 

distance between the hyperplane is 2 / ||w||, So we want to 

minimize ||w||. To excite data points, we need to ensure that 

for all i either 

   w. xi – b ≥ 1   or  

  w. xi – b ≤ -1 

This can be written as 

yi ( w. xi – b) ≥1,1 ≤ i ≤ n    ……….. (2) 

 

Figure.1 Maximum margin hyperplanes for a SVM     

trained with samples from two classes[33]. 

Samples along the hyperplanes are called Support Vectors 

(SVs). A separating hyperplane with the largest margin 

defined by M = 2 / ||w||, that  specifies  support  vectors  

means  training data points closest to it.  But which satisfy? 

y j [w
T . x j + b ]= 1   , i =1    .……… (3)  

Optimal Canonical Hyperplane (OCH) is a canonical 

Hyperplane having a maximum margin. For all the data, OCH 

should satisfy the following constraints. 

y j [w
T . x j + b ]= 1   ;  i =1,2…l   ……….. (4) 

Where l is Number of Training data point. In order to find the 

optimal separating hyperplane having a maximul margin, A 

learning machine should minimize ||w||2 subject to the 

inequality constraints 

y j [w
T . x j + b ] ≥ 1    ;  i =1,2…….l 

This optimization problem solved by the saddle points of the 

Lagrange’s Function 
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Where αi is a Lagrange’s multiplier .The search for an optimal 

saddle points ( w0, b0, α0 ) is necessary because Lagrange’s 

must be minimized with respect to w and b and has to be 

maximized with respect to nonnegative  αi  (αi  ≥  0).  This 

problem can be solved either in primal form (which is the 

form of w & b) or in a dual form (which is the form of  αi 

).Equation 4, 5 are convex and KKT conditions, which are 

necessary and sufficient conditions   for   a   maximum   of   

equation 4. Partially differentiating equation 5 with respect to 

saddle points ( w0, b0, α0 ), we get 

∂L / ∂w0 = 0  
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And           ∂L / ∂b0 = 0 
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Substituting equation (6) and (7) in equation (5). We change 

the primal form into dual form. 
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In order to find the optimal hyperplane, a dual lagrangian (Ld) 

has to be maximized with respect to   nonnegative   αi  (i.e.   αi    

must   be   in   the nonnegative quadrant) and with respect to 

the equality constraints as follow 

α i   ≥ 0  ,  i = 1,2…...l        

0 ii y

  

Note that the dual Lagrangian Ld(α) is expressed in terms  of  

training  data  and  depends  only  on  the scalar products of 

input patterns (xi
T  xj).More detailed information on SVM can 

be found in References, [30]&[31]. 

 

2.1 Kernel Selection of SVM 
Training vectors  xi   are  mapped  into  a  higher (may   be   

infinite)   dimensional   space   by   the function Ф. Then 

SVM finds a linear separating hyperplane with the maximal 

margin in this higher dimension space . C > 0 is the penality 

parameter of the error term. 

Furthermore, K(xi  , xj) ≡ Ф(xi)
T  Ф(xj) is called the  kernel  

function[31].  There  are  many  kernel functions in SVM, so, 

how select a good kernel function according to the problem is 

also a research topic. However, there are some popular kernel 

functions [31] & [32], for general purposes. 

 

 Linear kernel: K (xi , xj) = xi
T xj. 

 Polynomial kernel: 

K (xi , xj ) = (γ xi
T xj.+ r)d      ,      γ > 0 

 RBF kernel : 

K (xi , xj) = exp(-γ ||xi - xj|| 
2)  ,     γ > 0 

 Sigmoid kernel: 

K (xi , xj) = tanh(γ xi
T xj + r) 

 

Here, γ, r and d are kernel parameters. RBF is most effective 

and important, because of the following reasons[30]: 

1.The RBF kernel nonlinearly maps samples into a higher 

dimensional space unlike to linear kernel. 

2.The RBF kernel has less hyperparameters than the 

polynomial kernel. 

3.The   RBF   kernel   has   less   numerical difficulties. 

  

2.2 Model/ Parameter Selection of SVM 
Model selection is also an important concern in SVM. 

Recently, SVM have shown good performance in data 

classification. Its success depends on the tuning of several 

parameters which affect the generalization error. We often call 

this parameter tuning procedure as the model selection. If you 

use the linear SVM, you only need to tune the cost parameter 

C. Unfortunately, linear SVM are often applied to linearly 

separable problem. Many problems are non-linearly separable. 

For example, Satellite data and Shuttle data are not linearly 

separable [30], and so as value prediction data. Therefore, we 

often apply nonlinear kernel to solve classification problems, 

so we need to select the cost parameter (C) and kernel 

parameters (γ, d). 

Grid-search method is used generally in cross validation to 

select the best parameter set, but we have set it manually. We  

apply this parameter set to the training dataset to classify the 

testing dataset to obtain the generalization accuracy. 

3. PROBLEM STATEMENT 
Sometimes linear inseparability may arise when a correct 

prediction on a past instruction causes the current instruction 

to predict incorrectly [25]. Small improvements in accuracy 

can have a large impact on performance; decreasing the 

misprediction rate from, say, 5% to 4% can decrease the 

execution time of a typical program by as much as 14% [28].  

Here, we propose a novel global confidence estimation 

scheme using SVM which can achieve a better accuracy. 
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Figure 6: Block Diagram of the Prediction Architecture with our SVM Confidence estimator 
 

4. EARLY WORK ON CONFIDENCE 

ESTIMATION 
Lipasti, Wilkerson, and Shen introduced the earliest 

confidence estimator used in data value prediction in [4]. It is 

comprised of a 2-bit saturating up-down counter that chooses 

between three prediction states: 0 or 1 = “don’t predict”, 2 = 

“predict” and 3= “constant” (highly predictable). If a given 

instruction makes a correct prediction, the counter is 

incremented; otherwise, it is decremented. Regardless of 

whether the instruction predicts correctly or incorrectly, the 

counter is not allowed to exceed 3 or go under 0. This 

approach is used in many other data value predictors [8, 12, 

and 13]. 

The use of the perceptron as a predictor was first suggested by 

Vintan et al [14]. The perceptron is one of the simplest models 

of a neuron and was developed by Rosenblatt [1] to help study 

brain function. The simplest perceptron is a neuron that 

connects several weighted inputs to a single output. 

Classically, the output y of the perceptron is the dot product of 

the weights ),,( 1 nwww   and the inputs

),,( 1 nxxx  , with the bias input b, which can be thought 

of as a weight ow  with constant input 10 x . 

i
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The output y is used to classify a new pattern x. The 

perceptrons performance in classifying is improved by 

incrementally adjusting its weights during training using the 

perceptron learning algorithm (Figure 2a). 
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                 (a)                                                (b) 

Figure 2: The Update Algorithm for the Perceptron (a) 

and  SVM (b). θ is learning threshold parameter. t ϵ {±1} is 

the classification of the vector x. The sign of y is the 

classification hypothesis for x, given by Equations 9 and 4 

for the perceptron and SVM respectively. 

Michael Black and Manoj Franklin, in their paper named 

“Perceptron-based Confidence Estimation for Value 

Prediction” [24, 26], presented a perceptron-based confidence 

estimator for data value prediction that makes use of 

correlations between the predictability of different 

instructions. 

Their confidence estimator uses the predictability information 

to raise the accuracy of data value prediction. Simulation 

results show that the perceptron confidence estimator 
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generally offers significant improvement over the 

conventional up-down counter confidence estimator. 

To uncover predictability dependencies, he used a perceptron 

based confidence estimator. A perceptron is a simple neural 

network consisting of an adder, a threshold function, and a set 

of weights implemented by saturating signed integer counters. 

The perceptron uses these components to guess an output 

based on a series of inputs. 

Given a set of input bits, it computes the dot product of the 

inputs and the weights, and compares the result to a threshold 

value, typically 0 (an extra weight is hardwired to an input of 

1 to provide a bias). If the result is greater than 0, the 

perceptron returns “True”; otherwise it returns “False.” 

The perceptron determines the values of its weights by 

learning. When a correct value is found, the perceptron is 

“trained.” i.e., an error value is computed by the difference 

between the training value and the perceptron output. This 

error value is multiplied by each input bit and is added to the 

corresponding weight. In this manner, each weight is adjusted 

so that the desired output is realized from the particular input 

combination. When applied to confidence estimation, each 

weight value determines the relationship between a particular 

past instruction and the current instruction. If a weight value 

is positive and large, the past instruction’s predictability tends 

to have a direct effect on the current instruction’s 

predictability [17]. i.e.  to say, the current instruction’s data 

value predictor tends to predict correctly only when the past 

instruction’s data value predictor predicted correctly. If the 

weight value is negative and large, the past instruction’s 

predictability effect is inverse; the current instruction’s data 

predictor tends to predict correctly only when the past 

instruction mispredicted. If the weight value’s magnitude is 

small, the past instruction has been found to have little effect 

on the current instruction. 

5. WHY SUPPORT VECTOR 

MACHINES? 
Today, support vector machines and along with other learning 

based-kernel algorithms show better results than artificial 

neural networks and other intelligent or statistical models, on 

the most popular benchmark problems [23].  

A. Zanaty [29], introduced a new kernel function called 

Gaussian Radial Basis Polynomials Function (GRPF) that 

combines both Gaussian Radial Basis Function (RBF) and 

Polynomial (POLY) kernels for improving the accuracy of the 

Support Vector Machines (SVMs) classification for both 

linear and non-linear data sets.  

Osowski, Siwek, and Markiewic [30] solved the two spiral 

problem using both: MLP network trained by using 

Levenberg-Marquardt algorithm and SVM with radial basis 

function trained by applying Platt method. The training time 

of MLP was approximately 10 times longer than SVM. 

According to them, SVM is unbeatable in classification mode, 

while in regression MLP possesses better generalization 

ability.As confidence estimation is also a classification 

problem; here we have used SVM for the purpose. 

5.1 Linear separability and inseparability 
A limitation of perceptrons is that they are only capable of 

learning linearly separable functions. Minsky and Papert [2] 

show that perceptrons cannot learn linearly-inseparable 

functions, like XOR (fig 3), with 100% accuracy.  Minsky’s 

work originally claimed that this was the case for all neural 

networks, but it was later discovered that linearly inseparable 

functions can be learned in larger neural networks using 

hidden layers and more advanced training mechanisms. 

However, this is still a handicap for the simple single layered 

perceptron. Linear separability is classically pictured 

geometrically in an n-dimensional space, where n is the 

number of inputs. All the possible outputs are placed in the 

space. If the space can be divided by a plane so that all 

positive outputs are on one side of the plane and all negative 

outputs are on the other side, the function is linearly separable 

[3]. If no plane can be drawn, the function cannot be learned 

by a perceptron.  

 

Imagine the set of all possible inputs to a perceptron as an n -

dimensional space. The solution to the Equation 

 

𝑤0 +  𝑥𝑖

𝑛

1=1

𝑤𝑖 = 0 

 

is a hyperplane (e.g. a line, if n=2) dividing the space into the 

set of inputs for which the perceptron will respond false and 

the set for which the perceptron will respond true [8]. A 

Boolean function over variables x1...n   is linearly separable if 

and only if there exist values for 𝑤0..𝑛  such that all of the true 

instances can be separated from all of the false instances by 

that hyperplane. Since the output of a perceptron is decided by 

the above equation, only linearly separable functions can be 

learned perfectly by perceptrons. For instance, a perceptron 

can learn the logical AND of two inputs, but not the 

exclusive-OR, since there is no line separating true instances 

of the exclusive-OR function from false ones on the Boolean 

plane. 

 

Linear inseparability arises if a correct prediction on a past 

instruction causes the current instruction to predict correctly 

sometimes and incorrectly at other times.

 
 

Fig 3: Inseparability and Separability of XOR and AND 

function 

 

Because a correct prediction on a past instruction rarely 

causes the current instruction to predict incorrectly [24]. But 

sometimes this can happen[25]. 

In a perceptron, the effect of an input on the output is 

determined by its weight. As stated before, a positive weight 

means that the output varies directly with the input, while a 

negative weight causes the output to vary inversely with the 

input. Based on its weight, a 1 at a particular input can make 

the total output more positive or more negative. However, a 1 

at a particular input cannot make the total output more 

positive sometimes and more negative at other times. 
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Functions tend not to be linearly separable if one input’s 

effect on the output relies on another input’s effect which can 

happen in value prediction. And as support vector machines 

belong to a family of generalized linear classifiers and can be 

interpreted as an extension of the perceptron, They are both 

linear and non-linear classifiers. 

 

6. EXPERIMENTAL RESULTS 

6.1 Experimentation Methodology 
Our measurements were performed on the PISA instruction 

set architecture. The data value predictor considers every 

instruction that has a single destination register. Predictions 

are made after each instruction executes and the actual 

instruction output is immediately used to train the predictor. 

Our study is performed using three types of predictors: Last-

Value, Stride, and Context. The Last-Value predictor simply 

returns the value that an instruction produced the last time it 

was executed. The Stride predictor computes the difference 

between the last two results of an instruction, and adds it to 

the most recent result to predict a value. The Context 

predictor uses the most recent four data values produced by an 

instruction to index a pattern table of up-down counters [8]. 

The counters choose one of the four data values to be the 

prediction. Each of the three predictors includes a table 

indexed by the instruction address. We use 16k table entries 

and a direct-map organization for the table. We have also used 

LIBSVM 3.17 in windows command prompt to find out the 

accuracy rate of prediction.   

We have used our independent data sets for finding out the 

misprediction rate in support vector machine as well as 

perceptron. The results in figure-4, shows that SVM has 

performed better than Perceptron. 

As no. of data points increases, SVM achieves upto 3% less 

misprediction than Perceptron. That means more the amount 

of instructions executed, higher the accuracy. 

Our predictor uses n SVMs, The ith SVM, which we 

informally call SVM[i], is distributed between two tables in 

hardware: 

 

 

Fig 4: Percentage of misprediction in perceptron and 

SVM. 

The weight table (SVM) 𝛼   and the table of support 

vectors(SVM) 𝑆𝑉    For each SVM, we set a strict maximum of 

m on the number of support vectors that can be collected 

during training. 

n- The number of SVMs used 

m- The maximum number of support vectors each SVM may 

accumulate 

Hash (·) -The hash function used to map each instruction 

address to one of the n SVMs 

Ker (u, v) -The kernel function 

AlgoSVM (θ, . . . ) − The algorithm to train each SVM, a 

function of the learning error 𝜃 

GHT- Global History Table 

 

6.2 Proposed Algorithm 
The data for training are vectors xi along with their 

categories yi. For some dimension d, the xi ∊ Rd, and 

the yi = ±1. The equation of a hyperplane is <w,x>+𝛼0 = 0 

Assuming w =weights and xi=address of instruction set. 

 

A. Initialize tolerance ϵ for Support Vector Detection    and 

parameters for kernel function. 

B. Initialize and set up Hessian matrix H. 

C. Initialize Parameters for the Optimization problem.     

D. Set up the equality constraints. 

E. Solve the Quadratic programming problem, i.e, 

min
1

2
∥ 𝑤 ∥2 𝑠𝑡  𝑦𝑖 𝑥𝑖 . 𝑤 + 𝛼0 − 1 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖  

F. Find the unbounded support vectors m and store in  SVM𝑆𝑉  

When an instruction is encountered: 

1. The instruction address is hashed to index i, to access 

SVM[i]. 

2. SVM[i] and its weights are put into  a register of weights, 

𝛼 = (𝛼0.   .  .𝛼𝑚 ). In parallel, SVM[i]’s m support vectors are 

fetched from SVM𝑆𝑉  and brought into vectors SV𝑖……. SV𝑚  

3. The dot products 𝑘𝑖= Ker (GHT,SV𝑖 ) for 𝑖𝜖{1 . . .m} are 

calculated.   

4. 𝛼𝑖 ∗ 𝑘𝑖   for 𝑖𝜖{1 . . .m} is  calculated. 

5. The results of the multiplications and the bias, 𝑦 = 𝑎0 +
 𝑎𝑖

𝑚
𝑖=1 𝑘𝑖  are summed. 

6. The prediction of SVM is the sign of y. The predictor stores 

the value of i, for later training of SVM[i]. 

7. When the actual outcome t of the instruction is known, shift 

the values in GHT, add t, and train SVM[i]. 

6.3 Confidence estimator organization 
The prediction system proposed by us works as follows: The 

instruction address is used to select a table entry. This table 

entry consists of a value predictor, which predicts a value and 

the SVM takes the GHR as its input and uses its weights to 

determine whether its output is “predict” or “don’t predict”. If 

the output is “predict”, the value predictor outcome is used as 

a prediction; otherwise the prediction is not used. Regardless 

of the SVMs outcome, when the actual result of the 

instruction is known, it is compared against the prediction of 

data predictor. 

If they match, a 1 (predicted correctly) is shifted into the GHR 

at the instruction’s completion stage. Otherwise, a 0 

(predicted incorrectly) is shifted into the GPH. The difference 

between the actual result and the prediction is then used to 

train the SVM.  

Figure 6 shows our block diagram and figure 5 shows that 

SVM classifies the two data sets with a very low 

misclassification rate. Thus, in case of value prediction, the 

data points position are the predictability of the instructions 

and it is SVMs job to find out which instruction should lie in 

which class. If the current instruction lies in class -1 that 

means some of the last predictions were incorrect. 

 

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Perceptron
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So, the prediction should not be used. SVM gradually learns 

to classify better. However, linear inseparability is rare in 

these cases, but still it happens. So a very small improvement 

in accuracy leads to a better performance. 

 

Fig 5: Classification by SVM 

 

7. CONCLUSION 
Based on the previous work and our simulation results it will 

be safe to assume that SVM’s work better than perceptrons. In 

case of branch prediction and confidence estimation, both 

produce same two classes, i.e. “taken”, “not taken” [27, 28] or 

“predict”, “Don’t predict”. So, we propose a SVM based 

confidence estimator that estimates the confidence value for 

prediction, where prediction will be done by data value 

predictors. Perceptron and SVM are compared and the 

prediction error rates are calculated. Support Vector Machines 

are used to identify which past instructions affect the accuracy  

of a prediction and to decide based on their results whether 

the prediction is likely to be correct or not . The confidence 

estimator raises the accuracy of value prediction. 

In future we would like to employ the algorithms more 

efficiently, because there are many issues like appropriate 

parameter and kernel selection. Using appropriate data set is 

also necessary to get SVMs optimum results. Thus we would 

be more specific in that when it comes to reducing the 

misprediction rate. As perceptrons and SVMs can also be used 

for value prediction, we would like to use them as well and 

also employ a confidence estimator using SVM’s along with it 

to gain more accuracy. 
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