
International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

51

A Novel Approach for Confidence Estimation using
Support Vector Machines for more Accurate Value

Prediction

Snigdha M. Mohapatra
Dept. of Computer Science

Centurion University of Technology and
Management

Pradipta K. Mishra
 Dept. of Computer Science

Centurion University of Technology and
Management

ABSTRACT

Data dependencies create hurdles in exploiting ILP among

instructions. To overcome them, data value predictors are

used which guess instructions’ result before it is actually

executed. Thus, future instructions which depend on the

outcome of that instruction executes sooner. But, since Value

Prediction accuracy is very crucial in determining the amount

of parallelism that can be exploited, Confidence estimation is

used along with it to lessen the value prediction misprediction

penalty by guessing whether or not to use a value prediction

result. Previous confidence estimators were based on

perceptrons which had the limitation of learning only linearly

separable functions,[2, 24]. But sometimes linear

inseparability may arise when a correct prediction on a past

instruction causes the current instruction to predict incorrectly

[25]. As Support Vector Machines belong to a family of

generalized linear classifier and can be interpreted as

extension of perceptron, they are both linear and non linear

classifiers and are computationally more efficient than

perceptrons. Thus, we propose a confidence estimator using

SVM’s in which the prediction accuracy of previous

instructions is used to estimate the confidence of current

prediction and decide based on its results whether or not the

prediction is likely to be correct. The classification algorithm

of SVM is implemented using MATLAB platform, and its

novel learning methods have been applied on different data

sets having two classes.

Keywords

Value Prediction, Confidence Estimation, SVM.

1. INTRODUCTION
Extensive research has been done in the area of data value

prediction for overcoming these data dependencies [7, 8, 9,

10, 11,17,18,20 and 21]. The goal of data value prediction is

to guess the outcome of an instruction before it is actually

executed, allowing future instructions that depend on its

output to be executed earlier. Data dependency is a normal

situation in which the data that the instructions use depend

upon the data created by other instructions, or the data is

stored in locations which are used by other instructions. This

problem is describes below. Let us consider two instructions:

1. Add r1, r2, r3 // r1=r2+ r3

2. Sub r3, r1, r2

Instruction 1 produces a result r1, which is the sum of r2 and

r3. Instruction 2 uses the result of instruction1 , i.e. r1 and

calculates the difference r3. Thus here, Instruction 2is said to

be data dependent on Instruction 2, because it uses

Instruction1’s result. Since r1 is not known until Instruction 1

executes, they can’t be executed in parallel. Data value

predictors look for patterns among data produced in different

iterations of static instructions. Accurate prediction can be

attained when the repeated outcomes of a particular

instruction follow easily perceptible patterns.

Accuracy is a major problem with data value prediction. Even

in most advanced data predictors, 30% to 60% of the

predictions are incorrect [17]. If an instruction is wrongly

predicted, and that incorrect prediction is used for next data

dependent instructions, then all of those instructions must be

executed again. This causes high misprediction penalty. Thus

in these cases, it is better not to predict than to mispredict.

This is the reason why most data value predictors use a

confidence estimator which determines whether or not a

prediction for a particular instruction is likely to be correct or

not[13]. If the estimator has high confidence in a prediction,

then the predicted value is used by the data dependent

instructions. Else, the prediction is discarded and the

dependent instructions wait for the current instruction to be

actually executed.

A typical confidence estimator tries to determine the accuracy

of a prediction instructions predictability) by looking at

whether the last several predictions for that instruction were

correct or not. If they were all correct then naturally the next

predictions should also be correct. But if the instruction was

recently mispredicted, then the new prediction is also not

trusted. But this is a localized approach; i.e. it doesn’t

consider the effect of other surrounding instructions on the

current instruction which is to be predicted. So, there exist

correlations between predictability of different instructions,

especially if those instructions are data dependent [17].

Hence, an instructions prediction outcome may be correct

only if a certain prior instructions prediction outcome was

correct.

However, in order to make use of other instructions prediction

accuracies, we must determine which surrounding instructions

affect the current instruction. It is found that these

predictability correlations tend to follow linearly separable as

well as linearly inseparable patterns [25].

As Support Vector Machines belong to a family of

generalized linear classifier and can be interpreted as

extension of perceptron. They are both linear and non linear

classifiers and are computationally more efficient than

perceptrons. Thus, we propose a confidence estimator using

SVM’s in which the prediction accuracy of previous

instructions is used to estimate the confidence of current

prediction and decide based on its results whether the

prediction is likely to be correct or not.

We have compared perceptron and SVM and the results show

better accuracy in prediction. In this paper, we introduce some

basic concepts of SVM, kernel function selection and model

selection (parameter selection) of SVM. In section 7 we detail

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

52

the experimental results. Finally, we have some conclusions in

section 8.

2. SUPPORT VECTOR MACHINES
SVMs are set of related supervised learning methods used for

classification and regression [31]. They belong to a family of

generalized linear classification. A special property of SVM is

SVM simultaneously minimize the empirical classification

error and maximize the geometric margin. So SVM called

Maximum Margin Classifiers. SVM is based on the Structural

risk Minimization (SRM). SVM map input vector to a higher

dimensional space where a maximal separating hyperplane is

constructed. Two parallel hyperplanes are constructed on each

side of the hyperplane that separate the data. The separating

hyperplane is the hyperplane that maximize the distance

between the two parallel hyperplanes. An assumption is made

that the larger the margin or distance between these parallel

hyperplanes the better the generalization error of the classifier

will be [31].

We consider data points of the form

{(x1,y1),(x2,y2),(x3,y3),(x4,y4)……….,(xn, yn)}. Where yn=1 /

-1 , a constant denoting the class to which that point xn

belongs. n = number of sample. Each xn is p-dimensional

real vector. The scaling is important to guard against variable

(attributes) with larger variance. We can view this Training

data, by means of the dividing (or seperating) hyperplane,

which takes the form of,

w . x + b = 0 ……... (1)

Where b is scalar and w is p-dimensional Vector.

The vector w points perpendicular to the separating hyper

plane. Adding the offset parameter b allows us to increase the

margin. Absent of b, the hyperplane is forced to pass through

the origin, restricting the solution. As we are interesting in the

maximum margin, we are interested SVM and the parallel

hyperplanes. Parallel hyperplanes can be described by

equations,

w.x + b = 1

w.x + b = -1

If the training data are linearly separable, we can select these

hyperplanes so that there are no points between them and then

try to maximize their distance. By geometry, we find the

distance between the hyperplane is 2 / ||w||, So we want to

minimize ||w||. To excite data points, we need to ensure that

for all i either

 w. xi – b ≥ 1 or

 w. xi – b ≤ -1

This can be written as

yi (w. xi – b) ≥1,1 ≤ i ≤ n ……….. (2)

Figure.1 Maximum margin hyperplanes for a SVM

trained with samples from two classes[33].

Samples along the hyperplanes are called Support Vectors

(SVs). A separating hyperplane with the largest margin

defined by M = 2 / ||w||, that specifies support vectors

means training data points closest to it. But which satisfy?

y j [w
T . x j + b]= 1 , i =1 .……… (3)

Optimal Canonical Hyperplane (OCH) is a canonical

Hyperplane having a maximum margin. For all the data, OCH

should satisfy the following constraints.

y j [w
T . x j + b]= 1 ; i =1,2…l ……….. (4)

Where l is Number of Training data point. In order to find the

optimal separating hyperplane having a maximul margin, A

learning machine should minimize ||w||2 subject to the

inequality constraints

y j [w
T . x j + b] ≥ 1 ; i =1,2…….l

This optimization problem solved by the saddle points of the

Lagrange’s Function






l

1i

i)b,(w,P
(5))...1)((- | |w| | 1/2LL bxwy i

T
i








l

1i

i
T)1)((- w w1/2 bxwy i

T
i

Where αi is a Lagrange’s multiplier .The search for an optimal

saddle points (w0, b0, α0) is necessary because Lagrange’s

must be minimized with respect to w and b and has to be

maximized with respect to nonnegative αi (αi ≥ 0). This

problem can be solved either in primal form (which is the

form of w & b) or in a dual form (which is the form of αi

).Equation 4, 5 are convex and KKT conditions, which are

necessary and sufficient conditions for a maximum of

equation 4. Partially differentiating equation 5 with respect to

saddle points (w0, b0, α0), we get

∂L / ∂w0 = 0

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

53

i .e

ii

l

i

i xyw 




1

0 

 ………... …(6)

And ∂L / ∂b0 = 0

i .e

0

1




xyi

l

i

i

 ..…………. (7)

Substituting equation (6) and (7) in equation (5). We change

the primal form into dual form.






l

1i

id
1/2-)(L j

T
ijiji xxyy

…… (8)

In order to find the optimal hyperplane, a dual lagrangian (Ld)

has to be maximized with respect to nonnegative αi (i.e. αi

must be in the nonnegative quadrant) and with respect to

the equality constraints as follow

α i ≥ 0 , i = 1,2…...l

0 ii y

Note that the dual Lagrangian Ld(α) is expressed in terms of

training data and depends only on the scalar products of

input patterns (xi
T xj).More detailed information on SVM can

be found in References, [30]&[31].

2.1 Kernel Selection of SVM
Training vectors xi are mapped into a higher (may be

infinite) dimensional space by the function Ф. Then

SVM finds a linear separating hyperplane with the maximal

margin in this higher dimension space . C > 0 is the penality

parameter of the error term.

Furthermore, K(xi , xj) ≡ Ф(xi)
T Ф(xj) is called the kernel

function[31]. There are many kernel functions in SVM, so,

how select a good kernel function according to the problem is

also a research topic. However, there are some popular kernel

functions [31] & [32], for general purposes.

 Linear kernel: K (xi , xj) = xi
T xj.

 Polynomial kernel:

K (xi , xj) = (γ xi
T xj.+ r)d , γ > 0

 RBF kernel :

K (xi , xj) = exp(-γ ||xi - xj||
2) , γ > 0

 Sigmoid kernel:

K (xi , xj) = tanh(γ xi
T xj + r)

Here, γ, r and d are kernel parameters. RBF is most effective

and important, because of the following reasons[30]:

1.The RBF kernel nonlinearly maps samples into a higher

dimensional space unlike to linear kernel.

2.The RBF kernel has less hyperparameters than the

polynomial kernel.

3.The RBF kernel has less numerical difficulties.

2.2 Model/ Parameter Selection of SVM
Model selection is also an important concern in SVM.

Recently, SVM have shown good performance in data

classification. Its success depends on the tuning of several

parameters which affect the generalization error. We often call

this parameter tuning procedure as the model selection. If you

use the linear SVM, you only need to tune the cost parameter

C. Unfortunately, linear SVM are often applied to linearly

separable problem. Many problems are non-linearly separable.

For example, Satellite data and Shuttle data are not linearly

separable [30], and so as value prediction data. Therefore, we

often apply nonlinear kernel to solve classification problems,

so we need to select the cost parameter (C) and kernel

parameters (γ, d).

Grid-search method is used generally in cross validation to

select the best parameter set, but we have set it manually. We

apply this parameter set to the training dataset to classify the

testing dataset to obtain the generalization accuracy.

3. PROBLEM STATEMENT
Sometimes linear inseparability may arise when a correct

prediction on a past instruction causes the current instruction

to predict incorrectly [25]. Small improvements in accuracy

can have a large impact on performance; decreasing the

misprediction rate from, say, 5% to 4% can decrease the

execution time of a typical program by as much as 14% [28].

Here, we propose a novel global confidence estimation

scheme using SVM which can achieve a better accuracy.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

54

Figure 6: Block Diagram of the Prediction Architecture with our SVM Confidence estimator

4. EARLY WORK ON CONFIDENCE

ESTIMATION
Lipasti, Wilkerson, and Shen introduced the earliest

confidence estimator used in data value prediction in [4]. It is

comprised of a 2-bit saturating up-down counter that chooses

between three prediction states: 0 or 1 = “don’t predict”, 2 =

“predict” and 3= “constant” (highly predictable). If a given

instruction makes a correct prediction, the counter is

incremented; otherwise, it is decremented. Regardless of

whether the instruction predicts correctly or incorrectly, the

counter is not allowed to exceed 3 or go under 0. This

approach is used in many other data value predictors [8, 12,

and 13].

The use of the perceptron as a predictor was first suggested by

Vintan et al [14]. The perceptron is one of the simplest models

of a neuron and was developed by Rosenblatt [1] to help study

brain function. The simplest perceptron is a neuron that

connects several weighted inputs to a single output.

Classically, the output y of the perceptron is the dot product of

the weights),,(1 nwww  and the inputs

),,(1 nxxx  , with the bias input b, which can be thought

of as a weight ow with constant input 10 x .

i

n

i

i wxwwxby 




1

0, ……….. (9)

The output y is used to classify a new pattern x. The

perceptrons performance in classifying is improved by

incrementally adjusting its weights during training using the

perceptron learning algorithm (Figure 2a).

i
tx

i
w

i
w

i
wallfor

thenyorytif



 0

1),(min

1







y

i

i

y

twithwwimize

toupdate

SVxallfor

thenyortif





 (a) (b)

Figure 2: The Update Algorithm for the Perceptron (a)

and SVM (b). θ is learning threshold parameter. t ϵ {±1} is

the classification of the vector x. The sign of y is the

classification hypothesis for x, given by Equations 9 and 4

for the perceptron and SVM respectively.

Michael Black and Manoj Franklin, in their paper named

“Perceptron-based Confidence Estimation for Value

Prediction” [24, 26], presented a perceptron-based confidence

estimator for data value prediction that makes use of

correlations between the predictability of different

instructions.

Their confidence estimator uses the predictability information

to raise the accuracy of data value prediction. Simulation

results show that the perceptron confidence estimator

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

55

generally offers significant improvement over the

conventional up-down counter confidence estimator.

To uncover predictability dependencies, he used a perceptron

based confidence estimator. A perceptron is a simple neural

network consisting of an adder, a threshold function, and a set

of weights implemented by saturating signed integer counters.

The perceptron uses these components to guess an output

based on a series of inputs.

Given a set of input bits, it computes the dot product of the

inputs and the weights, and compares the result to a threshold

value, typically 0 (an extra weight is hardwired to an input of

1 to provide a bias). If the result is greater than 0, the

perceptron returns “True”; otherwise it returns “False.”

The perceptron determines the values of its weights by

learning. When a correct value is found, the perceptron is

“trained.” i.e., an error value is computed by the difference

between the training value and the perceptron output. This

error value is multiplied by each input bit and is added to the

corresponding weight. In this manner, each weight is adjusted

so that the desired output is realized from the particular input

combination. When applied to confidence estimation, each

weight value determines the relationship between a particular

past instruction and the current instruction. If a weight value

is positive and large, the past instruction’s predictability tends

to have a direct effect on the current instruction’s

predictability [17]. i.e. to say, the current instruction’s data

value predictor tends to predict correctly only when the past

instruction’s data value predictor predicted correctly. If the

weight value is negative and large, the past instruction’s

predictability effect is inverse; the current instruction’s data

predictor tends to predict correctly only when the past

instruction mispredicted. If the weight value’s magnitude is

small, the past instruction has been found to have little effect

on the current instruction.

5. WHY SUPPORT VECTOR

MACHINES?
Today, support vector machines and along with other learning

based-kernel algorithms show better results than artificial

neural networks and other intelligent or statistical models, on

the most popular benchmark problems [23].

A. Zanaty [29], introduced a new kernel function called

Gaussian Radial Basis Polynomials Function (GRPF) that

combines both Gaussian Radial Basis Function (RBF) and

Polynomial (POLY) kernels for improving the accuracy of the

Support Vector Machines (SVMs) classification for both

linear and non-linear data sets.

Osowski, Siwek, and Markiewic [30] solved the two spiral

problem using both: MLP network trained by using

Levenberg-Marquardt algorithm and SVM with radial basis

function trained by applying Platt method. The training time

of MLP was approximately 10 times longer than SVM.

According to them, SVM is unbeatable in classification mode,

while in regression MLP possesses better generalization

ability.As confidence estimation is also a classification

problem; here we have used SVM for the purpose.

5.1 Linear separability and inseparability
A limitation of perceptrons is that they are only capable of

learning linearly separable functions. Minsky and Papert [2]

show that perceptrons cannot learn linearly-inseparable

functions, like XOR (fig 3), with 100% accuracy. Minsky’s

work originally claimed that this was the case for all neural

networks, but it was later discovered that linearly inseparable

functions can be learned in larger neural networks using

hidden layers and more advanced training mechanisms.

However, this is still a handicap for the simple single layered

perceptron. Linear separability is classically pictured

geometrically in an n-dimensional space, where n is the

number of inputs. All the possible outputs are placed in the

space. If the space can be divided by a plane so that all

positive outputs are on one side of the plane and all negative

outputs are on the other side, the function is linearly separable

[3]. If no plane can be drawn, the function cannot be learned

by a perceptron.

Imagine the set of all possible inputs to a perceptron as an n -

dimensional space. The solution to the Equation

𝑤0 + 𝑥𝑖

𝑛

1=1

𝑤𝑖 = 0

is a hyperplane (e.g. a line, if n=2) dividing the space into the

set of inputs for which the perceptron will respond false and

the set for which the perceptron will respond true [8]. A

Boolean function over variables x1...n is linearly separable if

and only if there exist values for 𝑤0..𝑛 such that all of the true

instances can be separated from all of the false instances by

that hyperplane. Since the output of a perceptron is decided by

the above equation, only linearly separable functions can be

learned perfectly by perceptrons. For instance, a perceptron

can learn the logical AND of two inputs, but not the

exclusive-OR, since there is no line separating true instances

of the exclusive-OR function from false ones on the Boolean

plane.

Linear inseparability arises if a correct prediction on a past

instruction causes the current instruction to predict correctly

sometimes and incorrectly at other times.

Fig 3: Inseparability and Separability of XOR and AND

function

Because a correct prediction on a past instruction rarely

causes the current instruction to predict incorrectly [24]. But

sometimes this can happen[25].

In a perceptron, the effect of an input on the output is

determined by its weight. As stated before, a positive weight

means that the output varies directly with the input, while a

negative weight causes the output to vary inversely with the

input. Based on its weight, a 1 at a particular input can make

the total output more positive or more negative. However, a 1

at a particular input cannot make the total output more

positive sometimes and more negative at other times.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

56

Functions tend not to be linearly separable if one input’s

effect on the output relies on another input’s effect which can

happen in value prediction. And as support vector machines

belong to a family of generalized linear classifiers and can be

interpreted as an extension of the perceptron, They are both

linear and non-linear classifiers.

6. EXPERIMENTAL RESULTS

6.1 Experimentation Methodology
Our measurements were performed on the PISA instruction

set architecture. The data value predictor considers every

instruction that has a single destination register. Predictions

are made after each instruction executes and the actual

instruction output is immediately used to train the predictor.

Our study is performed using three types of predictors: Last-

Value, Stride, and Context. The Last-Value predictor simply

returns the value that an instruction produced the last time it

was executed. The Stride predictor computes the difference

between the last two results of an instruction, and adds it to

the most recent result to predict a value. The Context

predictor uses the most recent four data values produced by an

instruction to index a pattern table of up-down counters [8].

The counters choose one of the four data values to be the

prediction. Each of the three predictors includes a table

indexed by the instruction address. We use 16k table entries

and a direct-map organization for the table. We have also used

LIBSVM 3.17 in windows command prompt to find out the

accuracy rate of prediction.

We have used our independent data sets for finding out the

misprediction rate in support vector machine as well as

perceptron. The results in figure-4, shows that SVM has

performed better than Perceptron.

As no. of data points increases, SVM achieves upto 3% less

misprediction than Perceptron. That means more the amount

of instructions executed, higher the accuracy.

Our predictor uses n SVMs, The ith SVM, which we

informally call SVM[i], is distributed between two tables in

hardware:

Fig 4: Percentage of misprediction in perceptron and

SVM.

The weight table (SVM) 𝛼 and the table of support

vectors(SVM) 𝑆𝑉 For each SVM, we set a strict maximum of

m on the number of support vectors that can be collected

during training.

n- The number of SVMs used

m- The maximum number of support vectors each SVM may

accumulate

Hash (·) -The hash function used to map each instruction

address to one of the n SVMs

Ker (u, v) -The kernel function

AlgoSVM (θ, . . .) − The algorithm to train each SVM, a

function of the learning error 𝜃

GHT- Global History Table

6.2 Proposed Algorithm
The data for training are vectors xi along with their

categories yi. For some dimension d, the xi ∊ Rd, and

the yi = ±1. The equation of a hyperplane is <w,x>+𝛼0 = 0

Assuming w =weights and xi=address of instruction set.

A. Initialize tolerance ϵ for Support Vector Detection and

parameters for kernel function.

B. Initialize and set up Hessian matrix H.

C. Initialize Parameters for the Optimization problem.

D. Set up the equality constraints.

E. Solve the Quadratic programming problem, i.e,

min
1

2
∥ 𝑤 ∥2 𝑠𝑡 𝑦𝑖 𝑥𝑖 . 𝑤 + 𝛼0 − 1 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

F. Find the unbounded support vectors m and store in SVM𝑆𝑉

When an instruction is encountered:

1. The instruction address is hashed to index i, to access

SVM[i].

2. SVM[i] and its weights are put into a register of weights,

𝛼 = (𝛼0. . .𝛼𝑚). In parallel, SVM[i]’s m support vectors are

fetched from SVM𝑆𝑉 and brought into vectors SV𝑖……. SV𝑚

3. The dot products 𝑘𝑖= Ker (GHT,SV𝑖) for 𝑖𝜖{1 . . .m} are

calculated.

4. 𝛼𝑖 ∗ 𝑘𝑖 for 𝑖𝜖{1 . . .m} is calculated.

5. The results of the multiplications and the bias, 𝑦 = 𝑎0 +
 𝑎𝑖

𝑚
𝑖=1 𝑘𝑖 are summed.

6. The prediction of SVM is the sign of y. The predictor stores

the value of i, for later training of SVM[i].

7. When the actual outcome t of the instruction is known, shift

the values in GHT, add t, and train SVM[i].

6.3 Confidence estimator organization
The prediction system proposed by us works as follows: The

instruction address is used to select a table entry. This table

entry consists of a value predictor, which predicts a value and

the SVM takes the GHR as its input and uses its weights to

determine whether its output is “predict” or “don’t predict”. If

the output is “predict”, the value predictor outcome is used as

a prediction; otherwise the prediction is not used. Regardless

of the SVMs outcome, when the actual result of the

instruction is known, it is compared against the prediction of

data predictor.

If they match, a 1 (predicted correctly) is shifted into the GHR

at the instruction’s completion stage. Otherwise, a 0

(predicted incorrectly) is shifted into the GPH. The difference

between the actual result and the prediction is then used to

train the SVM.

Figure 6 shows our block diagram and figure 5 shows that

SVM classifies the two data sets with a very low

misclassification rate. Thus, in case of value prediction, the

data points position are the predictability of the instructions

and it is SVMs job to find out which instruction should lie in

which class. If the current instruction lies in class -1 that

means some of the last predictions were incorrect.

http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Perceptron

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

57

So, the prediction should not be used. SVM gradually learns

to classify better. However, linear inseparability is rare in

these cases, but still it happens. So a very small improvement

in accuracy leads to a better performance.

Fig 5: Classification by SVM

7. CONCLUSION
Based on the previous work and our simulation results it will

be safe to assume that SVM’s work better than perceptrons. In

case of branch prediction and confidence estimation, both

produce same two classes, i.e. “taken”, “not taken” [27, 28] or

“predict”, “Don’t predict”. So, we propose a SVM based

confidence estimator that estimates the confidence value for

prediction, where prediction will be done by data value

predictors. Perceptron and SVM are compared and the

prediction error rates are calculated. Support Vector Machines

are used to identify which past instructions affect the accuracy

of a prediction and to decide based on their results whether

the prediction is likely to be correct or not . The confidence

estimator raises the accuracy of value prediction.

In future we would like to employ the algorithms more

efficiently, because there are many issues like appropriate

parameter and kernel selection. Using appropriate data set is

also necessary to get SVMs optimum results. Thus we would

be more specific in that when it comes to reducing the

misprediction rate. As perceptrons and SVMs can also be used

for value prediction, we would like to use them as well and

also employ a confidence estimator using SVM’s along with it

to gain more accuracy.

8. REFERENCES
[1] F. Rosenblatt, Principles of Neurodynamics: Perceptrons

and the Theory of Brain Mechanisms, Spartan, 1962.

[2] M.L. Minsky and S.A. Papert, Perceptrons, MIT Press,

1969.

[3] S. Russell and P. Norvig. “Artificial Intelligence: A

Modern Approach.” Prentice-Hall, Inc., Upper Saddle

River, NJ, 1995, pp. 563-593.

[4] M. H. Lipasti, C. B. Wilderson, and J. P. Shen, “Value

locality and load value prediction,” in Proceedings of the

7th ACM International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOSVII), October 1996.

[5] M. H. Lipasti and J. P. Shen. “Exceeding the Dataflow

Limit via Value Prediction.” Proceedings of the 29th

Annual ACM/IEEE International Symposium on

Microarchitecture, Dec., 1996

[6] K. Wang and M. Franklin. “Highly Accurate Data Value

Prediction using Hybrid Predictors.” Proc 30th Intl Symp

on Microarchitecture, Dec. 1997.

[7] F. Gabbay and A. Mendelson. “Can Program Profiling

support Value Prediction?” Proc 30th Intl Symp on

Microarchitecture, Dec. 1997.

[8] K. Wang and M. Franklin. “Highly Accurate Data Value

Prediction using Hybrid Predictors.” Proc 30th Intl Symp

on Microarchitecture, Dec. 1997

[9] Y. Sazeides, J. E. Smith. “Implementations of Context

Based Value Predictors.” Technical Report ECE-97-8,

University of Wisconsin-Madison, Dec. 1997.

[10] Y. Sazeides, J. E. Smith. “Implementations of Context

Based Value Predictors.” Technical Report ECE-97-8,

University of Wisconsin-Madison, Dec. 1997.

[11] B. Calder, G. Reinman, and D. Tullsen. “Selective value

prediction.” Technical Report UCSD-CS98- 597,

University of California, San Diego, Sep. 1998.

[12] M. Burtscher, B. G. Zorn. “Profile-Supported

Confidence Estimation for Load-Value Prediction.”

Technical Report CU-CS-872-98, University of Colorado

at Boulder, Oct. 1998.

[13] M. Burtscher and B. G. Zorn. “Prediction Outcome

History-based Confidence Estimation for Load Value

Prediction.” Journal of Instruction Level Parallelism,

May 1999.

[14] Lucian N. Vintan and Mihaela Iridon, “Towards a high

performance neural branch predictor,” in Proceedings of

the 1999 International Joint Conference on Neural

Networks. July 1999, vol. 2, pp. 868–873, IEEE

Computer Society

[15] Bernhard Sch¨olkopf, Chris Burges, and Alex Smola,

Eds., Advances in Kernel Methods - Support Vector

Learning, MIT Press, 1999.

[16] N. Cristianini and J. Shawe-Taylor, An Introduction to

Support Vector Machines, Cambridge University Press,

2000

[17] R. Thomas and M. Franklin, “Characterization of Data

Value Unpredictability to Improve Predictability.” Proc

Intl Conf on High Performance Computing, 2001.

[18] R. Thomas and M. Franklin. “Using Dataflow Based

Context for Accurate Value Prediction,” Proc Intl Conf

on Parallel Architectures and Compilation Techniques,

2001

[19] Bernhard Sch¨olkopf, “Svm and kernel methods,”

December2001,http://www.kernelmachines.org/papers/tu

torial-nips.ps.gz.

[20] D. Jimenez and C. Lin. “Composite Confidence

Estimators for Enhanced Speculation Control.” Technical

Report TR2002-14, Dept. of Computer Sciences,

University of Texas at Austin, 2002.

International Journal of Computer Applications (0975 – 8887)

International Conference on Emergent Trends in Computing and Communication (ETCC-2014)

58

[21] H. Zhou, J. Flanagan, and T. Conte. “Detecting Global

Stride Locality in Value Streams.” Proc Intl Symp on

Computer Architecture, 2003.

[22] M. Black. “Perceptron-based Global Confidence

Estimation for Value Prediction.” M.S. Thesis,

Department of Electrical and Computer Engineering,

University of Maryland, June 2003.

[23] Meyer D, Leisch F, Hornik K. The support vector

machinesunder test. Neurocomputing 2003 ;55:169–86.

[24] M. Black and M. Franklin. “Perceptron-based

Confidence Estimation for Value Prediction.”

International Conference on Intelligent Sensors and

Information Processing, Jan. 2004.

[25] M. Black and M. Franklin. “Applying Perceptrons to

Computer Architecture.” Proceedings of the Second

International Conference on Intelligent Sensors and

Information Processing, Jan. 2005.

[26] M. Black and M. Franklin. “Neural Confidence

Estimation for More Accurate Value Prediction.”

International Conference on High Performance

Computing, 2005.

[27] culpepper and gondree, “SVMs for Improved Branch

Prediction” ECS201A Computer Architecture[2008].

[28] Asis Kumar Tripathy et al, International Journal of

Advanced Research in Computer Science, 2 (1), Jan. –

Feb, 2011,310-313

[29] E.A. Zanaty “Support Vector Machines (SVMs) versus

Multilayer Perception (MLP) in data classification”

Egyptian Informatics Journal (September 2012) 13, 177–

183)

[30] Boser, B. E., I. Guyon, and V. Vapnik (1992). A training

algorithm for optimal margin classifiers . In Proceedings

of the Fifth Annual Workshop on Computational

Learning Theory, pages. 144 -152. ACM Press 1992.

[31] V. Vapnik. The Nature of Statistical Learning Theory.

NY: Springer-Verlag. 1995.

[32] Chih-Wei Hsu, Chih-Chung Chang, and Chih- Jen Lin.

“A Practical Guide to Support VectorClassification” .

Deptt of Computer Sci. National Taiwan Uni, Taipei,

106, Taiwan http://www.csie.ntu.edu.tw/~cjlin 2007.

[33] Durgesh Srivastava and Lekha Bhambhu, “Data

classification using support vector machine” Journal of

Theoretical and Applied Information Technology,

Department of CSE/IT, BRCM CET, Bhiwani, Haryana,

India 2005

