
International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

6

Malware Classification through HEX
Conversion and Mining

A.Pratheema Manju Prabha
PG Scholar, Dept of CSE,

Dr. M.G.R. Educational and Research Institute,
Maduravoyal, Chennai – 600 095.

P.Kavitha
Assistant Professor, Dept of CSE,

Dr. M.G.R. Educational and Research Institute,
Maduravoyal, Chennai – 600 095.

ABSTRACT
The malicious codes are normally referred as malware. Systems

are vulnerable to the traditional attacks, and attackers continue to

find new ways around existing protection mechanisms in order

to execute their injected code. Malware is a pervasive problem in

distributed computer and network systems. These new malicious

executables are created at the rate of thousands every year. There

are several types of threat to violate these components; for

example Viruses, Worms, Trojan horse and Malware. Malware

represents a serious threat to confidentiality since it may result in

loss of control over private data for computer users. It is

typically hidden from the user and difficult to detect since it can

create significant unwanted CPU activity, disk usage and

network traffic. In existing systems, new malicious programs can

be detected by automatic signature generation called as F-Sign

for automatic extraction of unique signatures from malware files.

This is primarily intended for high-speed network traffic. The

signature extraction process is based on a comparison with a

common function repository. The data mining framework

employed in this research learns through analyzing the behavior

of existing malicious and benign codes in large datasets. We

have employed robust classifiers, namely Naïve Bayes (NB)

Algorithm, k−Nearest Neighbor (kNN) Algorithm, and J48

decision tree and have evaluated their performance. This

involves extracting opcode sequence from the dataset, to

construct a classification model and to identify it as malicious or

benign. Our approach showed 98.4% detection rate on new

programs whose data was not used in the model building

process.

Keywords
Malware, F –Sign, Naïve Bayes Algorithm, J48 Algorithm,

k−Nearest Neighbor Algorithm.

1. I NTRODUCTION
Malware is short for malicious software. The basic definition of

malware (malicious software) may be presented as follows:

piece of software code that works for the attacker. It causes

severe damage to private users, commercial companies, and

governments. The recent growth in high-speed Internet

connections provides a platform for creating and rapidly

spreading the new malware. Several analysis techniques for

detecting malware have been proposed. They are classified as to

whether they are static or dynamic. In dynamic analysis (also

known as behavioral-based analysis), detection is based on

information collected from the operating system at runtime [3]

(i.e., during the execution of the program), such as system calls,

network access and files, and memory modifications. In static

analysis, the detection is based on information extracted

explicitly or implicitly from the executable binary/source code.

The main advantage of static analysis is in providing rapid

classification. Since antivirus Programs that have the potential to

violate the privacy and security of a system. According to the

Symantec Internet Threat Report [1], 499,811 new malware

samples were received in the second half of 2007. Detection of

malware is important to a secure distributed computing

environment.

The technique used in commercial anti malware systems to

detect an instance of malware is through the use of malware

signatures. Malware signatures attempt to capture invariant

characteristics or patterns in the malware that uniquely identifies

it. String based signatures have remained popular in commercial

systems due to their high efficiency, but can be ineffective in

detecting malware variant [12][3][8][7].

The byte level content is different because small changes to the

malware source code can result in significantly different

compiled object code. In this paper we describe malware

variants with the umbrella term of polymorphism. Polymorphism

describes related malware sharing a common history of code.

Code sharing among variants can be derived from autonomously

self mutating malware, or manually copied by the malware

creator to reuse previously authored code.

Malwise automatically identifies and unpacks the malware as

necessary. The results demonstrate that the system finds high

similarities between malware families using both approximate

and exact matching. Additionally, our work performs in close to

real-time analysis is done with quantitative analysis on

efficiency.

1.1 Existing Approaches and Motivation
A malware's control flow information provides a characteristic

that is identifiable across strains of malware variants.

Approximate matchings of flowgraph based characteristics can

be used in order to identify a greater number of malware

variants. Detection of variants is possible even when more

significant changes to the malware source code are introduced.

Control flow [9][11][18] has proven effective, and fast

algorithms have been proposed to identify exact isomorphic

whole program control flow graphs and related information, yet

approximate matching of program structure has shown to be

expensive in runtime costs.

Poor performance in execution speed has resulted in the absence

of approximate matching in end host malware detection. To

hinder the static analysis necessary for control flow analysis, the

malware's real content is frequently hidden using a code

transformation known as packing. Packing is not solely used by

malware. Packing is also used in software protection schemes

and file compression for legitimate software, yet the majority of

malware also uses the code packing transformation. In one

month during 2007, 79% of identified malware was packed [1].

Unpacking is a necessary component to perform static analysis

and to reveal the hidden characteristics of malware. In the

problem scope of unpacking, it can be seen that many instances

of malware utilize identical or similar packers. Many of these

packers are also public, and malware often employs the use of

these public packers. Many instances of malware also employ

modified versions of public packers.

International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

7

Malware detection has been investigated extensively, however

shortcomings still exist. For modern malware classification

approaches, a system must be developed that is not only

effective against polymorphic and packed malware, but that is

also efficient. Unless efficient systems are developed,

commercial Antivirus will be unable to implement the solutions

developed by researchers. We believe combining effectiveness

with real-time efficiency is an area of research which has been

largely ignored. In this paper we present an effective and

efficient system that employs dynamic and static analysis to

automatically unpack and classify a malware instance as a

variant, based on similarities of control flow graphs [19].

Machine-learning methods, including the K-nearest neighbor,

Support Vector Machine, and decision tree methods are used to

classify executables. Basic common Techniques used for

detecting malware can be categorized as shown in the figure 1.

1.2 Malware Types
Viruses are malware that infects other files and make them

perform some unwanted and harmful function. In other words, a

virus copies itself into another file. When the file is executed, the

virus functions will also be executed.

Worms are self-propagating malware. This category spreads

through networks by for example exploiting known

vulnerabilities in commonly used operating systems.

Trojan horses are programs with a disguised intent, by

concealing malicious pay load. Trojans may emulate the

behavior of an arbitrary program such as an authentication

through a login shell and retrieve an user‟s login credentials.

Root kits are software with the main purpose of staying

concealed and undetected by anti-virus software and end-users.

This type of malware was originally intended to provide root-

account on UNIX-like systems.

Backdoors are malware used to bypass authentication and/or

security measures. When a system has been compromised by one

of the previous described types of malware, a backdoor can be

installed to allow easier access later on.

1.3 Malware detection
Every program which wants to achieve its goal always takes

action. No matter how crafty the malicious code is in disguise, it

always has some different, relatively peculiar action which is

called suspicious behavior. Behavior identification is becoming

the direction of anti -virus. As Windows operating system is

widely used, it rapidly catches the malware‟ eye and becomes

the mainly growing environment and attacking object of

computer vicious code. Currently most of the malicious

programs are under Win32 environment. The popular vicious

code for the nonce always use API function provided by

Windows operating system to implement their functions, aiming

at the size of code predigestion and the effect mightiness. The

computer vicious program always infect normal program, and

carry out their malicious purpose when the infected program is

running.

String scanning is the most primitive approach to detect

malware. It searches for sequences of strings (bytes) that are

typical for a specific malware. Anti-virus companies organize

these string sequences as signatures in databases and a local anti-

virus application must download the latest signature updates to

have the latest means for detecting new malware.

Wildcards is a method that allows the scanner to skip bytes or a

range of bytes, for example skip bytes represented with the „?‟

character. Malware with early-generation obfuscation techniques

can be detected with wildcards.

Algorithmic scanning methods are techniques used when the

standard algorithm (such as string scanning) of the anti-virus

cannot deal with a specific malware. Under this category we find

filtering techniques that only scans certain files that are more

exposed to infections, for example to apply boot virus signatures

to boot sectors. Another technique is decryptor detection that

focuses on detecting the decryption component in malware that

applies encryption.

Code emulation uses a virtual machine that simulates a CPU and

memory management system in order to execute the malicious

executable. This technique mimics the instruction set of the CPU

by using virtual registers and flags. Additionally, the

functionality of the operating system must be emulated in such a

way that it supports system APIs, files etc. To detect malware

with this method the emulator analyzes each of the instructions

that are run in the virtual machine.

Heuristic analysis is useful when detecting new malware. This

technique looks for certain instructions/commands within an

executable that are not found in “benign” executables. However,

its biggest disadvantage is that they often find false positives.

1.4 Malware Analysis
Malware analysis is techniques that enable us to study and obtain

information about a malware‟s behavior [17]. These techniques

are also known as reverse engineering of malware. Commonly

used approaches are static (code) analysis that studies the

malware without executing it, and dynamic (behavioral) analysis

which study malware as they execute. Even though both

methods may accomplish the same goal of studying how

malware works, the tools and skills required are different [13].

Static analysis is done by analyzing the source code of the

malware to study how it functions. Typically, static analysis use

reverse engineering tools such as disassemblers, debuggers and

compilers. After applying these tools on the malware executable,

the investigator or malware analyst can study the source code to

gain knowledge on how the malware operates. For example how

it infects systems and propagates.

The easiest way of doing a dynamic analysis is to run the

malware and see what hap-pens. Note that this approach is not

without problems, since you may end up destroying all

information on your system or letting the malware propagate if

the sacrificed host is connected to the Internet. A popular

technique is to use a sandbox, which is a controlled environment

for running software.

International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

8

Figure 1: Detection of Malware

2. RELATED WORK
There are two main approaches for the detection of malware:

static analysis and dynamic analysis. Static analysis examines

the binary code to determine properties of this program without

running it. This technique was first used by compiler developers

to optimize the code. It is also used in reverse engineering and

for program understanding. It is not long since it was used for

the malware detection.

Dynamic analysis mainly consists in monitoring the execution of

a program to detect malicious behaviour. In the Windows

operating system, user applications rely on the interface provided

within a set of libraries, such as KERNEL32.DLL, NTDLL.DLL

and USER32.DLL in order to access system resources including

files, processes, network information and the registry. This

interface is known as the Win32 API [7]. Applications may also

call functions in NTDLL.DLL known as the Native API. The

Native API functions perform system calls in order to have the

kernel provide the requested service. In our previous works

(Alazab 2010; Alazab et al. 2010; Alazab, Venkatraman &

Watters 2010) we have demonstrated how to extract and analyse

these API call features including hooking of the system services

that are responsible to manage files[2][3][6][14]. The extracted

calls are confined to those that affect the files. Various features

related to the calls that create or modify files or even get

information from the file to change some value and information

about the DLLs that are loaded by the malware before the actual

execution are considered for the analysis.

The analysis of computer system performed offline is called

static analysis, which has been employed in this research to

study the patterns of the API calls within binary executables by

reverse engineering the code. Static analysis provides a better

understanding of the anomalous behavior patterns of the code

since we adopt a methodology to perform a deep analysis into

the code program and their statistical properties. The existing

techniques and methods exhibit false positives as they do not

perform sufficient statistical analysis to determine if the anomaly

was, actually malicious (Jacob et al., 2008; Symantec Enterprise

Security, 2011) [1][15]. Therefore, in this research, static

anomaly-based detection analysis is adopted to perform

introspection of the program code with the goal of determining

various dynamic properties of API function calls that are

extracted from these codes in an isolated environment.

In general, malware signatures can be classified as vulnerability-

based, exploit-based, and payload-based. A Vulnerability-based

signature describes the properties of a certain bug in the system

that can be maliciously exploited by the malware. Vulnerability-

based signatures do not attempt to detect every malicious code

exploiting the vulnerability, and therefore, can be very effective

when dealing with polymorphic malware. However, a

vulnerability-based signature can be generated only when the

vulnerability is discovered.

In 2005, studies reported in (Malan & Smith 2005) that a

temporal consistency element was added to the system call

frequency to calculate the frequency of API system call

sequences [8][11][9]. Similarity measures were calculated using

edit distance and Measuring Similarity with Intersection. The

first measure was on ordered sets of native API system calls,

while the second one was on unordered sets. Both similarity

measures based on API gave the probabilities of two peers. The

drawback is that they had considered only native API call

features.

3. PROBLEM DEFINITIONS AND OUR

APPROACH
While the battle between malware authors and anti-virus

producers are continuing, our motivation is to find the statistical

method to classify the malware.

Two approaches are employed to generate and compare

flowgraph signatures. Two flowgraph matching methods are

used to achieve the goal of either effectiveness or efficiency.

Exact Matching: An ordering of the nodes in the control flow

graph is used to generate a string based signature or graph

invariant of the flowgraph. String equality between graph

invariants is used to estimate isomorphic graphs.

Approximate Matching: The control flow graph is structured

in this approach. Structuring is t he process of decompiling

unstructured control flow in to higher level, source code like

constructs including structured conditions and iteration. Each

signature representing the structured control flow is represented

as a string. These signatures are then used for querying t he

database of known malware using an approximate dictionary

search. A similarity between flow graphs can subsequently be

constructed using the edit distance.

Data mining process:

Data mining is the process of generating patterns and comparing

the patterns with target resource and identifies their

characteristics. In this spyware detection process, we make use

of classification, association and regression techniques to mine

the files and WebPages. The notion of using data mining for this

purpose is that, data mining is capable of identifying the features

of a data that is completely new to the system. This detection is

performed on the basis of similar data set that is present in the

system in the form of training data. When a collection of data

with certain characteristics is provided, the system will be able to

classify the new data or predict the nature of the new data

entering the system based on the features of the training data set.

In this case, the classification and feature detection is to identify

whether the data is spyware or legitimate software. The

resources that are vulnerable to spyware threat are identified and

International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

9

the resource is discarded by the system. This process requires a

basic training data that is used to generate the patterns of

legitimate software and spyware.

Data mining is a discipline which is an intersection of different

fields such as statistics, machine learning, data management and

databases [16]. Often data mining is associated with knowledge

discovery which is an interactive and iterative process used to

find and structure information from large data sets [14].

There are two terms in data mining that is worthy of noticing;

namely, descriptive modeling and predictive modeling. A

descriptive model presents the most important aspects of the

data, which is mainly a summary of the data that enables us to

gain further knowledge. An example that falls in this category is

cluster analysis that groups data objects based on their feature

similarities. On the other hand, predictive models are designed to

predict or forecast the outcome of a data mining process based

on previously known characteristics of the observed data.

Typical examples of predictive modeling are classification

algorithms that assign a class label to an observed object based

on feature measurements, and regression that predicts values of

new input to the algorithm.

Figure 2: Data Mining Process

Figure 2 shows a popular data mining process called Cross

Industry Standard Process for Data Mining (CRISP-DM) [7,

14]. The following list will give a short description of the 6

different phases of the process:

Problem understanding focuses on project objectives to further

convert this know-ledge into a data mining problem.

Data understanding starts with collection of initial data. This is

done to gain initial knowledge about the data that is going to be

analyzed.

Data preparation is the phase where you construct the dataset

from the collected data. This phase will include aspects such as

feature extraction and feature selection.

Modeling starts with selecting various modeling methods. Some

methods require certain representation of the data set (e.g.

discrete features values). Thus, it may be necessary to take a step

back to the data-preprocessing phase.

Evaluation phase focus on evaluating the previous used model.

Depending on the objectives, the different evaluation criteria

may be related to performance, ac-curacy etc.

Deployment is the last phase where the model is implemented

and utilized.

Compared to the machine learning example presented in the

previous related work the approaches are clearly similar.

However, as stated by Witten and Frank [18], the process of

data mining is a more practical approach. Therefore, simply put,

data mining employs learning in a practical manner.

The Naive Bayes (NB) Algorithm:

The Naive Bayes algorithm is one classification method based

on conditional probabilities that uses a statistical approach to the

problem of pattern recognition. Literature reports that it is the

most successful known algorithms for learning to classify text

documents, and further it is fast and highly scalable for model

building and scoring reference [6][9].

The idea behind a Naive Bayes algorithm is the Bayes Theorem

and the maximum posteriori hypothesis. Bayes Theorem finds

the probability of an event occurring given the probability of

another event that has occurred already. Among data mining

methods, Naive Bayes algorithm is easy to implement and is an

efficient and effective inductive learning algorithm for machine

learning.

Naive Bayes classifiers can handle an arbitrary number of

independent variables whether continuous or categorical. Given

a set of variables, = { }, we want to

construct the posterior probability for the event among a set of

possible outcomes = { }. In a more familiar

language, is the predictor and is the set of categorical levels

present in the dependent variable. Using Bayes' rule:

Where is the posterior probability of class

membership, i.e., the probability that belongs to .

In practice we are only interested in the numerator of that

fraction, since the denominator does not depend on and the

values of the features are given, so that the denominator is

effectively constant. The "naive" conditional independence

assumptions come into play: assume that each feature is

conditionally statistical independent of every other

feature for . This means that

For , and so the joint model can be expressed as

This means that under the above independence assumptions, the

conditional distribution over the class variable can be

expressed like this:

where (the evidence) is a scaling factor dependent only

on , i.e., a constant if the values of the feature

variables are known.

Finally, we can label a new case F with a class level that

achieves the highest posterior probability:

Among data mining methods, Naive Bayes algorithm is easy to

implement and is an efficient and effective inductive learning

algorithm for machine learning. Figure 3 provides the overall

International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

10

accuracy rate for malware detection achieved through our

experiments using Naive Bayes with k cross validations, k=

{2,3,4,5,6,7,8,9,10}.

Figure 3: Performance of Naïve Bayes

J48 Algorithm:

J48 classifier is a C4.5 decision tree used for classification

purposes. In order to classify a new item, the classifier first

needs to create a decision tree based on the attribute values of

the available training data. So, whenever it encounters a set of

items (training set) it identifies the attribute that discriminates

the various instances most clearly. This feature that is able to tell

the most about the data instances for classifying them the best is

said to have the highest information gain.

Algorithm:

C4.5 builds decision trees from a set of training data in the same

way as ID3, using the concept of information entropy. The

training data is a set of already classified

samples. Each sample is a vector

where represent attributes or features of the

sample. The training data is augmented with a

vector where represent the class to

which each sample belongs.

At each node of the tree, C4.5 chooses one attribute of the data

that most effectively splits its set of samples into subsets

enriched in one class or the other. Its criterion is the

normalized information gain (difference in entropy) [2][4] that

results from choosing an attribute for splitting the data. The

attribute with the highest normalized information gain is chosen

to make the decision. The C4.5 algorithm then recurses on the

smaller sub lists.

This algorithm has a few base cases.

A. All the samples in the list belong to the same class. When

this happens, it simply creates a leaf node for the decision

tree saying to choose that class.

B. None of the features provide any information gain. In this

case, C4.5 creates a decision node higher up the tree using

the expected value of the class.

Instance of previously-unseen class encountered. Again, C4.5

creates a decision node higher up the tree using the expected

value

Figure 4: Performance of J48

Among the possible values of this feature, if there is any value

for which there is no ambiguity, that is, when the data instances

falling within its category have the same value for the target

variable, then that branch is terminated and the target value

arrived is assigned to it.

4. PERFORMANCE EVALUATION
The classification algorithms require training data to train the

formulated models, and testing data to test those models.

Validation of the models is achieved by making a partition on

the database of malware and benign for carrying out the

experiments. The cross-validation is a technique used for

evaluating the results of a statistical analysis by generating an

independent dataset for Malware and benign. The most common

types of cross-validation are repeated random sub-sampling

validation and K-fold cross-validation [4][8] (Hand, Mannila, &

Smyth, 2001). For this research study of Malware and Benign

classification, K-fold cross-validation has been selected for

validation as it is commonly adopted for many

classifiers[1][9][12] (Witten and Frank, 2010; Bhattacharyya,

etal 2011).

In k-fold cross-validation the data is first partitioned into k sized

segments or folds. Then, k iterations of training and validation

are performed such that within iteration a different fold of the

data is held-out for validation while the remaining k-1 folds are

used for learning. The advantage of K-Fold cross-validation is

that all the examples in the dataset are eventually used for both

training and testing. Also, all observations are used for both

training and validation, and each observation is used for

validation exactly once.

The following metrics are used to evaluate our method with an

existing system

True positive (TP): benign programs are correctly identified

True negative (TN): malicious programs are correctly identified.

False positive (FP): benign programs are wrongly identified as

malicious.

False negative (FN): malicious programs are incorrectly

classified as benign.

The performance of our methodology was evaluated using the

true positive rate, false positive rate which are defined as

follows,

True positive rate (TPR): percentage of benign programs

correctly identified.

TPR= (TP/TP+FN)

International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

11

False Positive Rate (FPR): percentage of malicious programs

wrongly identified.

FPR= (FP/TN+FP)

500 virus file and 300 benign file are given as input. From

which the accuracy of true positive rate (TPR) of our proposed

methodology is higher than existing system and false positive

rate (FPR) of our proposed methodology is lower than existing

system.

5. EXPERIMENTAL WORK
In order to perform our experiments, we collect significantly

large malware database as stated in the system design section. To

obtain more accurate results we count in the subfamilies that

contain maximum number of samples in our dataset. In this

manner, experiments are carried out 1056 samples belonging to

ten families, five of them have two subfamilies, and therefore

there exists 15 subfamilies in our dataset shown in Table 1.

There are two main parameters in the experimental setup: the

first parameter is the size of the n-grams and the second

parameter is the number of the list size which is constituted by

ranking the n-grams according to their df values in the

subfamilies. The size of the n-grams, denoted by n, allows us to

decide how long in bytes the n-gram will be.

Subfamily Name

Instance

Number Subfamily Name

Instance

Number

Win32-Vobfus.Y 13 Win32-Sality.AT 64

Win32-Alureon.H 19 Win32-Small.AHY 69

Win32-Ramnit.F 19 Win32-Renos.NS 95

Win32-Virut.BG 19 Win32-Sality.AM 100

Win32-

Alureon.CT 22 Win32-Renos.LT 137

Win32-

Agent.ACF 23

Win32-

Vobfus.gen!D 183

Win32-Viking.CR 30 Win32-Ramnit.B 200

Win32-

Vobfus.AH 42

Table1: Number of the Instances for each Subfamily

A. Data Collection

Data set consists of 100 binaries out of which 90 are benign and

10 are Malware binaries. This hosts information about different

types of malicious software.

B. Byte Sequence Generation

We have opted to use byte sequences as data set features in our

experiment. These byte sequences represent fragments of

machine code from an executable file. We use xxd, which is a

UNIX-based utility for generating hexadecimal dumps of the

binary files. From these hexadecimal dumps we may then extract

byte sequences, in terms of n-grams of different sizes.

C. Dataset Generation

Two ARFF databases based on frequency and common features

were generated. All input attributes in the data set are

represented by Hexadecimal codes. These ranges are represented

by either 0 to 9, A to F.

D. Classification

A Naive Bayes classifier is a probabilistic classifier based on

Bayes theorem with independence assumptions, i.e., the

different features in the data set are assumed not to be

dependent of each other. This of course, is seldom true for real-

life applications. Nevertheless, the algorithm has shown good

performance for a wide variety of complex problems. J48 is a

decision tree-based learning algorithm. During classification, it

adopts a top-down approach and traverses a tree for

classification of any instance. Moreover, Random Forest is an

ensemble learner. In this ensemble, a collection of decision

trees are generated to obtain a model that may give better

predictions than a single decision tree.

In many practical applications, parameter estimation for naive

Bayes models uses the method of maximum likelihood; in other

words, one can work with the naive Bayes model without

believing in Bayesian probability or using any Bayesian

methods. In spite of their naive design and apparently over-

simplified assumptions, naive Bayes classifiers have worked

quite well in many complex real-world situations.

6. CONCLUSION
Data mining techniques perform better than traditional

techniques such as signature-base detection and Heuristic-

based detection.

In this paper, we have proposed a two phase analysis

technique to detect malicious code injection attack by using

static analysis and classification model constructed by

frequency of occurrence of opcode extracted from a dataset.

Since we are using the two phase analysis technique, files

with obfuscated code is detected in first phase by static

analysis and there is no need of the second phase. Files

without obfuscated code are detected in second phase by

classification model which classifies them as malicious or

benign.

The precision of detection of the algorithm has been validated

by the training and testing of abundant sample space. The

technique is a promising method to detect the win32 virus.

The proposed system is efficient as it uses filter approaches to

be able to successfully detect malware with a smaller feature

set.

The system is signature-free and does not require knowledge or

detailed study about the API sequence of execution to classify a

malware.

7. REFERENCES
[1] Symantec, "Symantec internet security threat report: Volume

XII,” effectiveness and efficiency of our work is in [9]. In

their Symantec 2008.

[2] F-Secure. (2007, 19 August 2009). F-Secure Reports

Amount of variants such as the Netsky family of malware u

sing the Malware Grew by 100% during 2007.

[3] K. Griffin, S. Schneider, X. Hu, and T. Chiueh, "Automatic

Generation of String Signatures for Malware Detection," in

Recent Advances in Intrusion Detection: 12th International

Symposium, RAID 2009 , Saint- Malo, France, 2009.

[4] J. O. Kephart and W. C. Arnold, "Automatic extraction of

computer virus signatures," in 4th Virus Bulletin

International Conference , 1994, pp. 178-184.

[5] J. Z. Kolter and M. A. Maloof, "Learning to detect

malicious executables in the wild," in International

International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)

Proceedings published by International Journal of Computer Applications® (IJCA)

12

Conference on Knowledge Discovery and Data Mining ,

2004, pp. 470-478.

[6] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida,

"Malware phylogeny generation using permutations of

code," Journal in Computer Virology, vol. 1, pp. 13-23,

2005.

[7] M. Gheorghescu, "An automated virus classification

system," in Virus Bulletin Conference , 2005, pp.

294-300.

[8] Y. Ye, D. Wang, T. Li, and D. Ye, "IMDS: intelligent

malware detection system," in Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery

and data mining , 2007.

[9] E. Carrera and G. Erdélyi, "Digital genome mapping–

advanced binary malware analysis," in Virus Bulletin

Conference , 2004, pp. 187-197.

[10] T. Dullien and R. Rolles, "Graph-based comparison of

Executable Objects (English Version)," in SSTIC , 2005.

[11] I. Briones and A. Gomez, "Graphs, Entropy and Grid

Computing: Automatic Comparison of

Malware," in Virus Bulletin Conference , 2008 pp. 1-12.

[12] S. Cesare and Y. Xiang, "Classification of Malware Using

Structured Control Flow," in 8th Australasian Symposium

on Parallel and Distributed Computing (AusPDC 2010) ,

2010.

[13] G. Bonfante, M. Kaczmarek, and J. Y. Marion,

"Morphological Detection of Malware," in

International Conference on Malicious and Unwanted

Software, IEEE , Alexendria VA, USA, 2008, pp. 1-8.

[14] R. T. Gerald and A. F. Lori, "Polymorphic malware

detection and identification via context-free

grammar homomorphism," Bell Labs Technical Journal,

vol. 12, pp. 139-147, 2007.

[15] X. Hu, T. Chiueh, and K. G. Shin, "Large-Scale

Malware Indexing Using Function-Call Graphs," in

Computer and Communications Security , Chicago, Illinois,

USA, pp. 611-620.

[16] Henchiri.O, Japkowicz.N (2006), ―A Feature Selection

and Evaluation Scheme for Computer Virus Detection ,

Data Mining, ICDM '06. Sixth International Conference on

Digital Object Identifier: 10.1109/ICDM.2006.4 Publication

Year: 2006 , Page(s): 891 – 895

[17] Moskovitch.R, Feher.C, Tzachar.N, Berger.E, Gitelman.M,

Dolev.S, and Elovici.Y (2008) ―Unknown Malcode

Detection Using OPCODE Representation , ISI 2008, June

17-20, Taipei, Taiwan.

[18] Bozagac.C.D, ―Application of Data Mining based

Malicious Code Detection Techniques for Detecting new

Spyware , White paper, Bilkent University 2005.

[19] J. Kinable and O. Kostakis, "Malware classification

based on call graph clustering," Journal in Computer

Virology, vol. 7, pp. 233-245, 2011.

[20] Moskovitch.R, Feher.C, Tzachar.N, Berger.E,

Gitelman.M, Dolev.S, and Elovici.Y (2008) ―Unknown

Malcode Detection Using OPCODE Representation , ISI

2008, June 17-20, Taipei, Taiwan.

