
International Conferenece on EGovernance & Cloud Computing Sevices(EGov ’12)  

Proceedings published by International Journal of Computer Applications® (IJCA) 

6 

Malware Classification through HEX 
Conversion and Mining

A.Pratheema Manju Prabha 
PG Scholar, Dept of CSE, 

Dr. M.G.R. Educational and Research Institute, 
Maduravoyal, Chennai – 600 095. 

 

P.Kavitha 
Assistant Professor, Dept of CSE, 

Dr. M.G.R. Educational and Research Institute, 
Maduravoyal, Chennai – 600 095. 

ABSTRACT 
The malicious codes are normally referred as malware. Systems 

are vulnerable to the traditional attacks, and attackers continue to 

find new ways around existing protection mechanisms in order 

to execute their injected code. Malware is a pervasive problem in 

distributed computer and network systems. These new malicious 

executables are created at the rate of thousands every year. There 

are several types of threat to violate these components; for 

example Viruses, Worms, Trojan horse and Malware. Malware 

represents a serious threat to confidentiality since it may result in 

loss of control over private data for computer users. It is 

typically hidden from the user and difficult to detect since it can 

create significant unwanted CPU activity, disk usage and 

network traffic. In existing systems, new malicious programs can 

be detected by automatic signature generation called as F-Sign 

for automatic extraction of unique signatures from malware files. 

This is primarily intended for high-speed network traffic. The 

signature extraction process is based on a comparison with a 

common function repository. The data mining framework 

employed in this research learns through analyzing the behavior 

of existing malicious and benign codes in large datasets. We 

have employed robust classifiers, namely Naïve Bayes (NB) 

Algorithm, k−Nearest Neighbor (kNN) Algorithm, and J48 

decision tree and have evaluated their performance. This 

involves extracting opcode sequence from the dataset, to 

construct a classification model and to identify it as malicious or 

benign. Our approach showed 98.4% detection rate on new 

programs whose data was not used in the model building 

process. 

Keywords 
Malware, F –Sign, Naïve Bayes Algorithm, J48 Algorithm, 
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1. I NTRODUCTION 
Malware is short for malicious software. The basic definition of 

malware (malicious software) may be presented as follows: 

piece of software code that works for the attacker. It causes 

severe damage to private users, commercial companies, and 

governments. The recent growth in high-speed Internet 

connections provides a platform for creating and rapidly 

spreading the new malware. Several analysis techniques for 

detecting malware have been proposed. They are classified as to 

whether they are static or dynamic. In dynamic analysis (also 

known as behavioral-based analysis), detection is based on 

information collected from the operating system at runtime [3] 

(i.e., during the execution of the program), such as system calls, 

network access and files, and memory modifications. In static 

analysis, the detection is based on information extracted 

explicitly or implicitly from the executable binary/source code. 

The main advantage of static analysis is in providing rapid 

classification. Since antivirus Programs that have the potential to 

violate the privacy and security of a system. According to the 

Symantec Internet Threat Report [1], 499,811 new malware 

samples were received in the second half of 2007. Detection of 

malware is important to a secure distributed computing 

environment. 

The technique used in commercial anti malware systems to 

detect an instance of malware is through the use of malware 

signatures. Malware signatures attempt to capture invariant 

characteristics or patterns in the malware that uniquely identifies 

it. String based signatures have remained popular in commercial 

systems due to their high efficiency, but can be ineffective in 

detecting malware variant [12][3][8][7]. 

The byte level content is different because small changes to the 

malware source code can result in significantly different 

compiled object code. In this paper we describe malware 

variants with the umbrella term of polymorphism. Polymorphism 

describes related malware sharing a common history of code. 

Code sharing among variants can be derived from autonomously 

self mutating malware, or manually copied by the malware 

creator to reuse previously authored code. 

Malwise automatically identifies and unpacks the malware as 

necessary. The results demonstrate that the system finds high 

similarities between malware families using both approximate 

and exact matching. Additionally, our work performs in close to 

real-time analysis is done with quantitative analysis on 

efficiency. 

1.1 Existing Approaches and Motivation 
A malware's control flow information provides a characteristic 

that is identifiable across strains of malware variants. 

Approximate matchings of flowgraph based characteristics can 

be used in order to identify a greater number of malware 

variants. Detection of variants is possible even when more 

significant changes to the malware source code are introduced. 

Control flow [9][11][18] has proven effective, and fast 

algorithms have been proposed to identify exact isomorphic 

whole program control flow graphs and related information, yet 

approximate matching of program structure has shown to be 

expensive in runtime costs.  

Poor performance in execution speed has resulted in the absence 

of approximate matching in end host malware detection. To 

hinder the static analysis necessary for control flow analysis, the 

malware's real content is frequently hidden using a code 

transformation known as packing. Packing is not solely used by 

malware. Packing is also used in software protection schemes 

and file compression for legitimate software, yet the majority of 

malware also uses the code packing transformation. In one 

month during 2007, 79% of identified malware was packed [1]. 

Unpacking is a necessary component to perform static analysis 

and to reveal the hidden characteristics of malware. In the 

problem scope of unpacking, it can be seen that many instances 

of malware utilize identical or similar packers. Many of these 

packers are also public, and malware often employs the use of 

these public packers. Many instances of malware also employ 

modified versions of public packers.  
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Malware detection has been investigated extensively, however 

shortcomings still exist. For modern malware classification 

approaches, a system must be developed that is not only 

effective against polymorphic and packed malware, but that is 

also efficient. Unless efficient systems are developed, 

commercial Antivirus will be unable to implement the solutions 

developed by researchers. We believe combining effectiveness 

with real-time efficiency is an area of research which has been 

largely ignored. In this paper we present an effective and 

efficient system that employs dynamic and static analysis to 

automatically unpack and classify a malware instance as a 

variant, based on similarities of control flow graphs [19]. 

Machine-learning methods, including the K-nearest neighbor, 

Support Vector Machine, and decision tree methods are used to 

classify executables. Basic common Techniques used for 

detecting malware can be categorized as shown in the figure 1. 

1.2 Malware Types 
Viruses are malware that infects other files and make them 

perform some unwanted and harmful function. In other words, a 

virus copies itself into another file. When the file is executed, the 

virus functions will also be executed.  

Worms are self-propagating malware. This category spreads 

through networks by for example exploiting known 

vulnerabilities in commonly used operating systems.  

Trojan horses are programs with a disguised intent, by 

concealing malicious pay load. Trojans may emulate the 

behavior of an arbitrary program such as an authentication 

through a login shell and retrieve an user‟s login credentials. 

Root kits are software with the main purpose of staying 

concealed and undetected by anti-virus software and end-users. 

This type of malware was originally intended to provide root-

account on UNIX-like systems.  

Backdoors are malware used to bypass authentication and/or 

security measures. When a system has been compromised by one 

of the previous described types of malware, a backdoor can be 

installed to allow easier access later on. 

1.3 Malware detection 
Every program which wants to achieve its goal always takes 

action. No matter how crafty the malicious code is in disguise, it 

always has some different, relatively peculiar action which is 

called suspicious behavior. Behavior identification is becoming 

the direction of anti -virus. As Windows operating system is 

widely used, it rapidly catches the malware‟ eye and becomes 

the mainly growing environment and attacking object of 

computer vicious code. Currently most of the malicious 

programs are under Win32 environment. The popular vicious 

code for the nonce always use API function provided by 

Windows operating system to implement their functions, aiming 

at the size of code predigestion and the effect mightiness. The 

computer vicious program always infect normal program, and 

carry out their malicious purpose when the infected program is 

running. 

String scanning is the most primitive approach to detect 

malware. It searches for sequences of strings (bytes) that are 

typical for a specific malware. Anti-virus companies organize 

these string sequences as signatures in databases and a local anti-

virus application must download the latest signature updates to 

have the latest means for detecting new malware.  

Wildcards is a method that allows the scanner to skip bytes or a 

range of bytes, for example skip bytes represented with the „?‟ 

character. Malware with early-generation obfuscation techniques 

can be detected with wildcards.  

Algorithmic scanning methods are techniques used when the 

standard algorithm (such as string scanning) of the anti-virus 

cannot deal with a specific malware. Under this category we find 

filtering techniques that only scans certain files that are more 

exposed to infections, for example to apply boot virus signatures 

to boot sectors. Another technique is decryptor detection that 

focuses on detecting the decryption component in malware that 

applies encryption. 

Code emulation uses a virtual machine that simulates a CPU and 

memory management system in order to execute the malicious 

executable. This technique mimics the instruction set of the CPU 

by using virtual registers and flags. Additionally, the 

functionality of the operating system must be emulated in such a 

way that it supports system APIs, files etc. To detect malware 

with this method the emulator analyzes each of the instructions 

that are run in the virtual machine.  

Heuristic analysis is useful when detecting new malware. This 

technique looks for certain instructions/commands within an 

executable that are not found in “benign” executables. However, 

its biggest disadvantage is that they often find false positives. 

1.4 Malware Analysis 
Malware analysis is techniques that enable us to study and obtain 

information about a malware‟s behavior  [17]. These techniques 

are also known as reverse engineering of malware. Commonly 

used approaches are static (code) analysis that studies the 

malware without executing it, and dynamic (behavioral) analysis 

which study malware as they execute. Even though both 

methods may accomplish the same goal of studying how 

malware works, the tools and skills required are different  [13]. 

Static analysis is done by analyzing the source code of the 

malware to study how it functions. Typically, static analysis use 

reverse engineering tools such as disassemblers, debuggers and 

compilers. After applying these tools on the malware executable, 

the investigator or malware analyst can study the source code to 

gain knowledge on how the malware operates. For example how 

it infects systems and propagates.  

The easiest way of doing a dynamic analysis is to run the 

malware and see what hap-pens. Note that this approach is not 

without problems, since you may end up destroying all 

information on your system or letting the malware propagate if 

the sacrificed host is connected to the Internet. A popular 

technique is to use a sandbox, which is a controlled environment 

for running software. 
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Figure 1: Detection of Malware 

2. RELATED WORK 
There are two main approaches for the detection of malware: 

static analysis and dynamic analysis. Static analysis examines 

the binary code to determine properties of this program without 

running it. This technique was first used by compiler developers 

to optimize the code. It is also used in reverse engineering and 

for program understanding. It is not long since it was used for 

the malware detection.  

Dynamic analysis mainly consists in monitoring the execution of 

a program to detect malicious behaviour. In the Windows 

operating system, user applications rely on the interface provided 

within a set of libraries, such as KERNEL32.DLL, NTDLL.DLL 

and USER32.DLL in order to access system resources including 

files, processes, network information and the registry. This 

interface is known as the Win32 API [7]. Applications may also 

call functions in NTDLL.DLL known as the Native API. The 

Native API functions perform system calls in order to have the 

kernel provide the requested service. In our previous works  

(Alazab  2010; Alazab et al. 2010;  Alazab, Venkatraman &  

Watters 2010) we have demonstrated how to extract and analyse 

these API call features including hooking of the system services 

that are responsible to manage files[2][3][6][14]. The extracted 

calls are confined to those that affect the files. Various features 

related to the calls that create or modify files or even get 

information from the file to change some value and information 

about the DLLs that are loaded by the malware before the actual 

execution are considered for the analysis. 

The analysis of computer system performed offline is called 

static analysis, which has been employed in this research to 

study the patterns of the API calls within binary executables by 

reverse engineering the code. Static analysis provides a better 

understanding of the anomalous behavior patterns of the code 

since we adopt a methodology to perform a deep analysis into 

the code program and their statistical properties. The existing 

techniques and methods exhibit false positives as they do not 

perform sufficient statistical analysis to determine if the anomaly 

was, actually malicious (Jacob et al., 2008; Symantec Enterprise 

Security, 2011) [1][15]. Therefore, in this research, static 

anomaly-based detection analysis is adopted to perform 

introspection of the program code with the goal of determining 

various dynamic properties of API function calls that are 

extracted from these codes in an isolated environment. 

In general, malware signatures can be classified as vulnerability-

based, exploit-based, and payload-based. A Vulnerability-based 

signature describes the properties of a certain bug in the system 

that can be maliciously exploited by the malware. Vulnerability-

based signatures do not attempt to detect every malicious code 

exploiting the vulnerability, and therefore, can be very effective 

when dealing with polymorphic malware. However, a 

vulnerability-based signature can be generated only when the 

vulnerability is discovered. 

In 2005, studies reported in  (Malan & Smith 2005) that a 

temporal consistency element was added to the system call 

frequency to calculate the frequency of API system call 

sequences [8][11][9]. Similarity measures were calculated using 

edit distance and Measuring Similarity with Intersection. The 

first measure was on ordered sets of native API system calls, 

while the second one was on unordered sets. Both similarity 

measures based on API gave the probabilities of two peers. The 

drawback is that they had considered only native API call 

features. 

3. PROBLEM DEFINITIONS AND OUR 

APPROACH 
While the battle between malware authors and anti-virus 

producers are continuing, our motivation is to find the statistical 

method to classify the malware. 

Two approaches are employed to generate and compare 

flowgraph signatures. Two flowgraph matching methods are 

used to achieve the goal of either effectiveness or efficiency.  

Exact Matching:  An ordering of the nodes in the control flow 

graph is used to generate a string based signature or graph 

invariant of the flowgraph. String equality between graph 

invariants is used to estimate isomorphic graphs.          

Approximate Matching:  The control flow graph is structured 

in this approach. Structuring is t he process of decompiling 

unstructured control flow in to higher level, source code like 

constructs including structured conditions and iteration. Each 

signature representing the structured control flow is represented 

as a string. These signatures are then used for querying t he 

database of known malware using an approximate dictionary 

search. A similarity between flow graphs can subsequently be 

constructed using the edit distance. 

Data mining process: 

Data mining is the process of generating patterns and comparing 

the patterns with target resource and identifies their 

characteristics. In this spyware detection process, we make use 

of classification, association and regression techniques to mine 

the files and WebPages. The notion of using data mining for this 

purpose is that, data mining is capable of identifying the features 

of a data that is completely new to the system. This detection is 

performed on the basis of similar data set that is present in the 

system in the form of training data. When a collection of data 

with certain characteristics is provided, the system will be able to 

classify the new data or predict the nature of the new data 

entering the system based on the features of the training data set. 

In this case, the classification and feature detection is to identify 

whether the data is spyware or legitimate software. The 

resources that are vulnerable to spyware threat are identified and 
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the resource is discarded by the system. This process requires a 

basic training data that is used to generate the patterns of 

legitimate software and spyware. 

Data mining is a discipline which is an intersection of different 

fields such as statistics, machine learning, data management and 

databases  [16]. Often data mining is associated with knowledge 

discovery which is an interactive and iterative process used to 

find and structure information from large data sets  [14]. 

There are two terms in data mining that is worthy of noticing; 

namely, descriptive modeling and predictive modeling. A 

descriptive model presents the most important aspects of the 

data, which is mainly a summary of the data that enables us to 

gain further knowledge. An example that falls in this category is 

cluster analysis that groups data objects based on their feature 

similarities. On the other hand, predictive models are designed to 

predict or forecast the outcome of a data mining process based 

on previously known characteristics of the observed data. 

Typical examples of predictive modeling are classification 

algorithms that assign a class label to an observed object based 

on feature measurements, and regression that predicts values of 

new input to the algorithm. 

         

 

Figure 2: Data Mining Process 

Figure 2 shows a popular data mining process called Cross 

Industry Standard Process for Data Mining (CRISP-DM)  [7, 

14]. The following list will give a short description of the 6 

different phases of the process: 

Problem understanding focuses on project objectives to further 

convert this know-ledge into a data mining problem.  

Data understanding starts with collection of initial data. This is 

done to gain initial knowledge about the data that is going to be 

analyzed.  

Data preparation is the phase where you construct the dataset 

from the collected data. This phase will include aspects such as 

feature extraction and feature selection. 

Modeling starts with selecting various modeling methods. Some 

methods require certain representation of the data set (e.g. 

discrete features values). Thus, it may be necessary to take a step 

back to the data-preprocessing phase.  

Evaluation phase focus on evaluating the previous used model. 

Depending on the objectives, the different evaluation criteria 

may be related to performance, ac-curacy etc.  

Deployment is the last phase where the model is implemented 

and utilized.  

Compared to the machine learning example presented in the 

previous related work the approaches are clearly similar. 

However, as stated by Witten and Frank  [18], the process of 

data mining is a more practical approach. Therefore, simply put, 

data mining employs learning in a practical manner. 

The Naive Bayes (NB) Algorithm: 

The Naive Bayes algorithm is one classification method based 

on conditional probabilities that uses a statistical approach to the 

problem of pattern recognition. Literature reports that it is the 

most successful known algorithms for learning to classify text 

documents, and further it is fast and highly scalable for model 

building and scoring reference [6][9].  

The idea behind a Naive Bayes algorithm is the Bayes Theorem 

and the maximum posteriori hypothesis. Bayes Theorem finds 

the probability of an event occurring given the probability of 

another event that has occurred already. Among data mining 

methods, Naive Bayes algorithm is easy to implement and is an 

efficient and effective inductive learning algorithm for machine 

learning. 

Naive Bayes classifiers can handle an arbitrary number of 

independent variables whether continuous or categorical. Given 

a set of variables,  = { }, we want to 

construct the posterior probability for the event  among a set of 

possible outcomes  = { }. In a more familiar 

language,  is the predictor and  is the set of categorical levels 

present in the dependent variable. Using Bayes' rule: 

 

Where  is the posterior probability of class 

membership, i.e., the probability that  belongs to . 

In practice we are only interested in the numerator of that 

fraction, since the denominator does not depend on  and the 

values of the features  are given, so that the denominator is 

effectively constant. The "naive" conditional independence 

assumptions come into play: assume that each feature  is 

conditionally statistical independent of every other 

feature  for . This means that 

            

For , and so the joint model can be expressed as 

           

     

This means that under the above independence assumptions, the 

conditional distribution over the class variable  can be 

expressed like this:            

 

where  (the evidence) is a scaling factor dependent only 

on , i.e., a constant if the values of the feature 

variables are known. 

Finally, we can label a new case F with a class level  that 

achieves the highest posterior probability: 

        

Among data mining methods, Naive Bayes algorithm is easy to 

implement and is an efficient and effective inductive learning 

algorithm for machine learning. Figure 3 provides the overall 
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accuracy rate for malware detection achieved through our 

experiments using Naive Bayes with k cross validations, k= 

{2,3,4,5,6,7,8,9,10}. 

 

 
Figure 3: Performance of Naïve Bayes 

J48 Algorithm: 

J48 classifier is a C4.5 decision tree used for classification 

purposes. In order to classify a new item, the classifier first 

needs to create a decision tree based on the attribute values of 

the available training data. So, whenever it encounters a set of 

items (training set) it identifies the attribute that discriminates 

the various instances most clearly. This feature that is able to tell 

the most about the data instances for classifying them the best is 

said to have the highest information gain. 

Algorithm: 

C4.5 builds decision trees from a set of training data in the same 

way as ID3, using the concept of information entropy. The 

training data is a set  of already classified 

samples. Each sample  is a vector 

where  represent attributes or features of the 

sample. The training data is augmented with a 

vector  where  represent the class to 

which each sample belongs. 

At each node of the tree, C4.5 chooses one attribute of the data 

that most effectively splits its set of samples into subsets 

enriched in one class or the other. Its criterion is the 

normalized information gain (difference in entropy) [2][4] that 

results from choosing an attribute for splitting the data. The 

attribute with the highest normalized information gain is chosen 

to make the decision. The C4.5 algorithm then recurses on the 

smaller sub lists. 

This algorithm has a few base cases. 

A. All the samples in the list belong to the same class. When 

this happens, it simply creates a leaf node for the decision 

tree saying to choose that class. 

B. None of the features provide any information gain. In this 

case, C4.5 creates a decision node higher up the tree using 

the expected value of the class. 

Instance of previously-unseen class encountered. Again, C4.5 

creates a decision node higher up the tree using the expected 

value 

 

Figure 4: Performance of J48 

Among the possible values of this feature, if there is any value 

for which there is no ambiguity, that is, when the data instances 

falling within its category have the same value for the target 

variable, then that branch is terminated and the target value 

arrived is assigned to it.  

4. PERFORMANCE EVALUATION 
The classification algorithms require training data to train the 

formulated models, and testing data to test those models. 

Validation of the models is achieved by making a partition on 

the database of malware and benign for carrying out the 

experiments. The cross-validation is a technique used for 

evaluating the results of a statistical analysis by generating an 

independent dataset for Malware and benign. The most common 

types of cross-validation are repeated random sub-sampling 

validation and K-fold cross-validation [4][8] (Hand, Mannila, & 

Smyth, 2001). For this research study of Malware and Benign 

classification, K-fold cross-validation has been selected for 

validation as it is commonly adopted for many 

classifiers[1][9][12] (Witten and Frank, 2010; Bhattacharyya, 

etal 2011). 

In k-fold cross-validation the data is first partitioned into k sized 

segments or folds. Then, k iterations of training and validation 

are performed such that within iteration a different fold of the 

data is held-out for validation while the remaining k-1 folds are 

used for learning. The advantage of K-Fold cross-validation is 

that all the examples in the dataset are eventually used for both 

training and testing. Also, all observations are used for both 

training and validation, and each observation is used for 

validation exactly once. 

The following metrics are used to evaluate our method with an 

existing system 

True positive (TP): benign programs are correctly identified 

True negative (TN): malicious programs are correctly identified. 

False positive (FP): benign programs are wrongly identified as 

malicious. 

False negative (FN): malicious programs are incorrectly 

classified as benign. 

The performance of our methodology was evaluated using the 

true positive rate, false positive rate which are defined as 

follows, 

True positive rate (TPR): percentage of benign programs 

correctly identified. 

TPR= (TP/TP+FN) 
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False Positive Rate (FPR): percentage of malicious programs 

wrongly identified. 

FPR= (FP/TN+FP) 

500 virus file and 300 benign file are given as input. From 

which the accuracy of true positive rate (TPR) of our proposed 

methodology is higher than existing system and false positive 

rate (FPR) of our proposed methodology is lower than existing 

system. 

5. EXPERIMENTAL WORK 
In order to perform our experiments, we collect significantly 

large malware database as stated in the system design section. To 

obtain more accurate results we count in the subfamilies that 

contain maximum number of samples in our dataset. In this 

manner, experiments are carried out 1056 samples belonging to 

ten families, five of them have two subfamilies, and therefore 

there exists 15 subfamilies in our dataset shown in Table 1. 

There are two main parameters in the experimental setup: the 

first parameter is the size of the n-grams and the second 

parameter is the number of the list size which is constituted by 

ranking the n-grams according to their df values in the 

subfamilies. The size of the n-grams, denoted by n, allows us to 

decide how long in bytes the n-gram will be. 

  

     

Subfamily Name  

Instance 

Number Subfamily Name 

Instance 

Number 

Win32-Vobfus.Y  13 Win32-Sality.AT 64 

Win32-Alureon.H  19 Win32-Small.AHY 69 

Win32-Ramnit.F  19 Win32-Renos.NS 95 

Win32-Virut.BG  19 Win32-Sality.AM 100 

Win32-

Alureon.CT  22 Win32-Renos.LT 137 

Win32-

Agent.ACF  23 

Win32-

Vobfus.gen!D 183 

Win32-Viking.CR  30 Win32-Ramnit.B 200 

Win32-

Vobfus.AH  42   

 

Table1: Number of the Instances for each Subfamily 

A. Data Collection 

Data set consists of 100 binaries out of which 90 are benign and 

10 are Malware binaries. This hosts information about different 

types of malicious software. 

B. Byte Sequence Generation 

We have opted to use byte sequences as data set features in our 

experiment. These byte sequences represent fragments of 

machine code from an executable file. We use xxd, which is a 

UNIX-based utility for generating hexadecimal dumps of the 

binary files. From these hexadecimal dumps we may then extract 

byte sequences, in terms of n-grams of different sizes. 

C. Dataset Generation 

Two ARFF databases based on frequency and common features 

were generated. All input attributes in the data set are 

represented by Hexadecimal codes. These ranges are represented 

by either 0 to 9, A to F. 

 

D. Classification 

A Naive Bayes classifier is a probabilistic classifier based on 

Bayes theorem with independence assumptions, i.e., the 

different features in the data set are assumed not to be 

dependent of each other. This of course, is seldom true for real-

life applications. Nevertheless, the algorithm has shown good 

performance for a wide variety of complex problems. J48 is a 

decision tree-based learning algorithm. During classification, it 

adopts a top-down approach and traverses a tree for 

classification of any instance. Moreover, Random Forest is an 

ensemble learner. In this ensemble, a collection of decision 

trees are generated to obtain a model that may give better 

predictions than a single decision tree. 

In many practical applications, parameter estimation for naive 

Bayes models uses the method of maximum likelihood; in other 

words, one can work with the naive Bayes model without 

believing in Bayesian probability or using any Bayesian 

methods. In spite of their naive design and apparently over-

simplified assumptions, naive Bayes classifiers have worked 

quite well in many complex real-world situations. 

6. CONCLUSION 
Data mining techniques perform better than traditional 

techniques such as signature-base detection and Heuristic-

based detection.  

In this paper, we have proposed a two phase analysis 

technique to detect malicious code injection attack by using 

static analysis and classification model constructed by 

frequency of occurrence of opcode extracted from a dataset. 

Since we are using the two phase analysis technique, files 

with obfuscated code is detected in first phase by static 

analysis and there is no need of the second phase. Files 

without obfuscated code are detected in second phase by 

classification model which classifies them as malicious or 

benign.  

The precision of detection of the algorithm has been validated 

by the training and testing of abundant sample space. The 

technique is a promising method to detect the win32 virus. 

The proposed system is efficient as it uses filter approaches to 

be able to successfully detect malware with a smaller feature 

set. 

The system is signature-free and does not require knowledge or 

detailed study about the API sequence of execution to classify a 

malware. 
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