
IJCA Special Issue on “Novel Aspects of Digital Imaging Applications”

DIA, 2011

53

 Parallel Implementation of Texture based Medical Image

Retrieval in Compressed Domain using CUDA

Kuldeep Yadav
Department of CSE,

College of Engineering Roorkee,
Roorkee-247667,Uttarakhand, India

Avi Srivastava

 Department of CSE,
 College of Engineering

Roorkee, Roorkee-247667,
Uttarakhand, India

 M.A Ansari
Department of Electrical,
 GBU, Greater Noida,
 Uttar Pradesh, India

ABSTRACT
In huge databases, Image processing takes more time for

execution on a single core processor because of slow single

thread algorithms. Graphics Processing Unit (GPU) is more

popular now-a-days due to their speed, programmability, low

cost and more inbuilt execution cores in it. Most of the

researchers started work to use GPUs as a processing unit with a

single core computer system to speedup execution of algorithms.

The main goal of this research work is to parallelize the process

of content based image retrieval through texture and that to in

compressed domain making whole process much faster than

normal. In this paper, parallel implementation is focused on the

well known Euclidean Distance approach for texture based

image retrieval systems, since it is one of the most fundamental

and important problems in the field of computer vision and

content based image retrieval (CBIR) and for compressed

images we have taken standard JPEG format. Our work employs

extensive usage of highly multithreaded architecture of multi-

cored GPU. An efficient use of shared memory is required to

optimize parallel reduction in Compute Unified Device

Architecture (CUDA). Experimental results show that parallel

implementation achieved an average speed up of 30 x over the

serial implementation when running on a GPU named GeForce

9500 GT having 32 cores. Texture based retrieval method of

CBIR is also evaluated using Recall, Precision, F-measure, True

Negative rate, and Accuracy evaluation measures.

General Terms

Content Based Image retrieval, GPU, Parallel Computing.

Keywords

Texture Based Image Retrieval; CUDA; GPU; Parallelization.

1. INTRODUCTION
Graphical Processing Units (GPUs) have been proved its

importance in terms of performance as hardware for computer

graphics [1]. Many researchers have already been applied GPUs

to implement many algorithms in various areas such as image

processing, computational geometry, and scientific computation,

as well as computer graphics [2-7]. GPUs play important role to

speedup processing of database images matching algorithms

because it has more inbuilt execution cores. The parallel

implementation of image analysis algorithms using GPU

encounters two problems. First, the programmer should master

of the fundamentals of GPU and CUDA [8]. CUDA platform is

used to implement the parallel implementation of algorithms.

Second, in a job it needs much process cooperation between

CPU and GPU.

Presented approach of parallelization is based on the first most

important phase of Image retrieval process named texture based

image retrieval. Texture based image retrieval is used to

distinguish a specific image or similar image, from a database of

hundreds of images. Image database cannot be stored in

uncompressed format because of limitation of space so generally

these images of database are in compressed format. There are

two types of retrieval process of images from the database:

uncompressed domain and compressed domain. Uncompressed

domain [9-14] retrieval process first decompresses the image in

database for matching while compressed domain methods [15-

21] match them in compressed format. The overhead cost of

decompression cost too much of clock cycle so compressed

format retrieval process has gained considerable amount of

attention for research. Compressed domain retrieval process has

only shortcoming of increasing data acquisition time and that

too is negligible.

Parallel implementations on GPUs have been applied to various

numerical problems [22-25] to reduce the computation time

without sacrificing the degree of accuracy. Fast CBIR is one of

the important problems in the field of computer vision. The

decompression of images and their high computation cost are

the main drawbacks of slow implementations of uncompressed

CBIR systems. Computational cost reduction approaches of

CBIR were proposed in [26] by Emmanuel at al. recently.

In the following sections, we present a detailed description of

the proposed methodology as well as experimental results that

demonstrate the efficiency of the proposed methodology.

2. INTRODCTION TO NVIDIA CUDA

ARCHITECTURE

CUDA™ is a general purpose parallel computing architecture

introduced by NVIDIA. It contains the CUDA Instruction Set

Architecture (ISA) and parallel compute engine in the GPU. The

CUDA architecture is programmed using C language, which can

then be run with great performance on a CUDA enabled

processor [27]. CUDA-enabled GPUs have hundreds of cores

that can collectively run thousands of computing threads. Each

core has shared resources, including registers and memory. The

on-chip shared memory allows parallel tasks running on these

cores to share data without sending it over the system memory

bus [28]. Thread hierarchy, shared memories and barrier

IJCA Special Issue on “Novel Aspects of Digital Imaging Applications”

DIA, 2011

54

synchronization are the three key abstractions of CUDA. A

kernel can be executed by a one dimensional or two dimensional

grids of multiple equally-shaped thread blocks. A thread block is

a 3, 2 or 1-dimensional group of threads. Threads within a block

can cooperate among themselves by sharing data through some

shared memory and synchronizing their execution to coordinate

memory accesses. Threads in different blocks cannot cooperate

and each block can execute in any order relative to other blocks.

The number of threads per block is therefore restricted by the

limited memory resources of a processor core.

CUDA kernel function is a fundamental building block of

CUDA programs. When launching a CUDA kernel function, a

developer specifies how many copies of it to run. We call each

of these copies a task. Because of the hardware support of the

GPU, each of these tasks can be small, and the developer can

queue hundreds of thousands of them for execution at once.

These tasks are organized in a two-level hierarchy, block and

grid. Small sets of tightly coupled tasks are grouped into blocks.

In a given execution of a CUDA kernel function, all blocks

contain the same number of tasks. The tasks in a block run

concurrently and can easily communicate with each other, which

enables useful optimizations such as those of the section

“Shared Memory”. GPU’s hardware keeps multiple blocks in

flight at once, with no guarantees about their relative execution

order. As a result, synchronization between blocks is difficult.

The set of all blocks run during the execution of a CUDA kernel

function is called a grid.

3. TEXTURE BASED SIMILARITY

FUNCTION IN JPEG

We used a method called the pyramid-structured wavelet

transform for texture classification. Its name comes from the fact

that it recursively decomposes sub signals in the low frequency

channels. It is mostly significant for textures with dominant

frequency channels. For this reason, it is mostly suitable for

signals consisting of components with information concentrated

in lower frequency channels.

Using the pyramid-structured wavelet transform [11], the texture

image is decomposed into four sub images, in low-low, low-

high, high-low and high-high sub-bands. At this point, the

energy level of each sub-band is calculated using eq. 1. This is

first level decomposition. As in our case we have taken image of

size 512x512 giving DC coefficients of size 64x64 and

minimum size for sub bands can be 16x16 so we apply

decomposition procedure two times and energy level of the sub

bands are calculated. The energy level values are stored for

using in Euclidean distance algorithm.

E =
1

MN
 x m, n (1)

N

j=1

M

i=1

After calculation of energy level, difference between values of

query and database images are found and arrange in decreasing

order using Euclidean distance algorithm defined in eq. 2.

d2 x, y = (xi − yi)
2

k

i=1

 (2)

4. EVALUATION MEASURES

The method of texture based image retrieval is evaluated using

the six evaluation measures: Precision, Recall, F-measure, True

negative rate, (Negative Rate Metric) NRM and accuracy.

 Precision:

Precision

TP

TP FP

 (3)

 Recall:

Recall
TP

TP FN

 (4)

 F-Measure:

ecisioncall

ecisioncall
MeasureF

PrRe

PrRe2

 (5)

 True Negative Rate:

True Negative Rate
TN

TN FP

 (6)

 Accuracy:

Accuracy
TP TN

TP TN FP FN

 (7)

 NRM:

2

FPFN NRNR
NRM

 (8)

Where TPFN

FN
NRFN

and TNFP

FP
NRFP

5. IMPLEMENTATION

In this work, the implementation of proposed approach is based

on the two set of experiments. In the first set of experiment,

proposed algorithm is implemented in C language and in second

set, parallel implementation is done using CUDA. The following

section dictates the detailed description of the parallel

implementation of the algorithm.

5.1 Parallel Implementation

In CUDA, it is assumed that both host and device maintain their

own DRAM. Host memory is allocated using malloc and device

memory is allocated using cudaMalloc. CUDA threads are

assigned a unique thread ID that identifies its location within the

thread, block and grid. This provides a natural way to invoke

computation across the image, by using the thread IDs for

IJCA Special Issue on “Novel Aspects of Digital Imaging Applications”

DIA, 2011

55

addressing. The parallel implementation of algorithm of CBIR is

shown in the form of pseudo code [11] shown in algorithm 1.

6. HARDWARE SPECIFICATIONS
All the experiments are carried out using the hardware

specifications of GPU: GeForce 9500 GT, 1 MB DDR2, No of

Processors = 4, No of core =32, RAM 1 GB, Frequency 1.35

GHz, DDR2 and CPU: Intel Core 2 Duo, 2.66 GHZ, No of cores

available =2, No of thread=1, No of thread/core=1, Physical

Memory =2 GB, DDR2

7. RESULTS AND DISCUSSIONS
For the testing of texture based retrieval approach of CBIR, we

collected a data set of MRI, CT-scan and X-ray to form database

of images in compressed format of JPEG. The results of texture

based retrieval approach are shown in fig. 4 that demonstrates

the efficiency of this approach. On the basis of visual

observation, texture based retrieval method of CBIR manages to

find images similar to query image in database but with a

drawback of a lot of time consumption. To make faster the

method, we parallelized it on CUDA and achieved an average

speed up of 30 x(approx) over the serial implementation when

running on a GPU. The comparison of serial implementation

over parallel is shown in table 1. Table 1 also shows that

execution time depends on the image resolution.

Further, the performance of method is evaluated using Precision,

Recall, F-measure, True Negative Rate, NRM and Accuracy

measures, which show the effectiveness of method shown in

table 2. Fig.2 shows the graph of execution time of GPU in

seconds. Fig.3 shows the graph of speedup. Fig. 1 shows the

graph of execution time of CPU in seconds. Output images of

Texture based retrieval approach is shown in fig. 4

Table 1: Execution time serial over parallel implementation

Table 2: Evaluation Measures

Image Precision Recall F-

Measure

TNR NMR Accuracy

1 75 75 75 75 25 75

2 75 75 75 75 25 75

3 75 75 75 75 25 75

4 50 50 50 50 50 50

5 100 100 100 50 00 100

Algorithm 1: Parallel Implementation of Texture based

image retrieval’s Energy level calculation algorithm

Step1. Decompose image in four sub-bands.

Step2. Parallely calculate Energy (eq. 1) for each band using

four threads.

Step3. Select least energy sub-band and apply step2 one more

time.

Algorithm 2: Parallel Implementation of Texture based

image retrieval’s Euclidean distance calculation algorithm

Step1. Select energy set of query image.

Step 2. Select one energy set of image in database.

Step2. Parallely calculate Euclidean distance (eq. 2) and save

it in Euclidean vector.

Step3. If more image in database

 Goto step 2

 Else

 Goto step 4

Step4. Arrange Euclidean vector in decreasing order of its

magnitude.

Resolution

(a X a)

Serial Parallel Speed-Up Speed-Up

Average

512 5.323 0.186559 28.532424
27.939524

256 3.264 0.119356 27.346625

512 4.756 0.153482 30.987394
29.559863

256 3.001 0.106674 28.132333

512 4.978 0.175967 28.289322
28.371278

256 2.954 0.103819 28.453234

512 5.121 0.175989 29.098344
29.000237

256 3.442 0.119091 28.902130

512 5.332 0.180891 29.476376
28.859399

256 3.991 0.141312 28.242423

 Average Speed-Up 28.746060

IJCA Special Issue on “Novel Aspects of Digital Imaging Applications”

DIA, 2011

56

 Fig1. Execution time in CPU vs. Resolution Fig2. Execution time in GPU vs. Resolution

Fig3. Speed up vs. Resolution

Image Number Query Image CBIR results

1.

0

1

2

3

4

5

6

1 2 3 4 5

Ti
m

e
 (

se
co

n
d

s)

No. of images

CPU vs. Resolution

512x 512 256 x 256

0

0.05

0.1

0.15

0.2

1 2 3 4 5

Ti
m

e
 (

Se
co

n
d

s)

No. of Images

GPU vs. Resolution

512 x 512 256 x 256

24

26

28

30

32

1 2 3 4 5

Sp
e

e
d

 U
p

Image No.

Speed Up vs. Resolution

521 x 512

256 x 256

IJCA Special Issue on “Novel Aspects of Digital Imaging Applications”

DIA, 2011

57

2.

3.

4.

Fig. 4: Output images of CBIR

8. CONCLUSION
In this research work, a well known texture based image

retrieval algorithm of CBIR has been parallelized and analyzed

with evaluation measures. The method is evaluated using

Precision, Recall, F-measure, True Negative Rate, NRM and

Accuracy measures. The implementation of CBIR algorithm on

the graphics device is promising with large image database.

However, texture based retrieval method produces images which

IJCA Special Issue on “Novel Aspects of Digital Imaging Applications”

DIA, 2011

58

are not similar in vision but they are not in top three results

which is considerable when compared with speed up of approx

30x.

CUDA itself has been shown to be an excellent framework to

accelerate computational problems in image processing,

numerical solving techniques and Image Processing areas.

 9.REFERENCES
[1] Fernando, R and Kilgard, M. J. The Cg tutorial the

definitive guide to programmable real-time graphics.

Addison-Wesley, 2003.

[2] Moravanszky, Linear algebra on the GPU, in: W.F. Engel

(Ed.), Shader X 2, Wordware Publishing, Texas, 2003.

[3] Manocha, Interactive geometric & scientific computations

using graphics hardware, SIGGRAPH 2003.

[4] Moreland, K. and Angel E. “The FFT on a GPU”. In

Proceedings of SIGGRAPH Conference on Graphics

Hardware, 112-119, 2003.

[5] Mairal, J., Keriven, R. and Chariot, A. “ Fast and efficient

dense variational Stereo on GPU”. In Proceedings of

International Symposium on 3D Data Processing,

Visualization, and Transmission, 97-704, 2006.

[6] Yang, R. and Welch, G. “Fast image segmentation and

smoothing using commodity graphics hardware”. Journal

of Graphics Tools, Vol. 17, (4), 91-100, 2002.

[7] Fung, J. and Man, “ OpenVIDIA: Parallel GPU computer

vision”. In Proceedings of ACM International Conference

on Multimedia, 849-852, 2005.

[8] Jang, H., Park, A. and Jung, K. “Neural network

implementation using CUDA and OpenMP”. In Proceeding

of Computing: Techniques and Applications, (DICTA),

IEEE, 155 – 161, 2008.

[9] Th. Gevers. “Image segmentation and matching of color-

texture objects”. IEEE Trans. on Multimedia, 4(4), 2002.

[10] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision,

McGraw Hill International Editions, 1995.

[11] Rami Al-Tayeche and Ahmed Khalil, “CBIR: Content

Based Image Retrieval”Department of Systems and

Computer Engineering Faculty of Engineering Carleton

University” Tech. Rep. April 4, 2003.

[12] Hemant d. Tagare, c. Carl jaffe, james duncan,” Medical

Image Database Retrieval”, 1/21/97.

[13] Grosky WI. “Iconic Indexing Using Generalized Pattern

 Matching Techniques”. Computer Vision, Graphics, and

ImageProcessing, 1986. 35:383–403.

[14] Chang SK. “Picture Indexing and Abstraction Techniques

for Pictorial Databases”. IEEE Transactions on Pattern

Analysisand Machine Intelligence, 1984. 6(4).

[15]Padmashri Suresh ,RMD.Sundaram Aravindhan Arumugam,

“Feature Extraction in Compressed Domain for Content

Based Image Retrieval”, International Conference on

Advanced Computer Theory and Engineering, 10.11.09

[16] M. Hatzigiorgaki and A. N. Skodras, “Compressed Domain

Image Retrieval: A Comparative Study of Similarity

Metrics”, Visual Communications and Image Processing

2003, Touradj Ebrahimi, Thomas Sikora, Editors,

Proceedings of SPIE Vol. 5150 (2003).

[17]B. Furht, P. Saksobhavivat, “Fast Content-Based

Multimedia Retrieval Technique Using Compressed Data,”

Proc. SPIE Vol. 3527, pp. 561-571, 1998

[18] W.B. Pennebaker and J.L. Mitchell, “JPEG Still Image

Data Compression Standard,” Van Nostrand Reinhold, NY,

1993.

[19] B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, and A.

Yamada, “Color and Texture Descriptors,” IEEE Trans.

Circuits and Systems for Video Technology, Vol. 11, No.

6, pp.703-715, June 2001.

[20] V. Castelli and L.D. Bergman (Editors), Image Databases:

Search and Retrieval of Digital Imagery, J. Wiley &

Sons, NY, 2002

[21] Chen, J.Y., Bouman, C.A., and Allebach, J.P., “Fast image

 database search using tree structured VQ,” Proc. Int. Conf.

on Image Processing, USA, Vol.2, pp. 827-830, October

1997.

[22] Owens, J. D. Luebke, D., Govindaraju, N., Harris, M.,

Kruger, J., Lefohn, A. E. and Purcell, T. J. “A survey of

general-purpose computation on graphics hardware”. In

proceeding of Eurographics, State of the Art Reports, 21–

51, 2005.

[23] Larsen, E. S., McAllister, D. “Fast Matrix Multiplies using

Graphics Hardware”. In Proceeding of International

Conference for High Performance Computing and

Communications, 159-168, 2001.

[24] Trendall C. and Stewart, A. J. “ General calculations using

graphics hardware with applications to interactive

caustics”. Rendering Techniques 2000: 11th Eurographics

Workshop on Rendering, 287-298, 2000.

[25] Li, Wei, Wei, Xiaoming, A. and Kaufman, “Implementing

lattice boltzmann computation on graphics hardware”. In

proceeding of the International Conference for High

Performance Computing and Communications , 2001.

[26] M. Emmanuel, D.R. Ramesh Babu, Jayashree Jagdale,

Pravin Game and G.P. Potdar, “Parallel Approach for

Content Based Medical Image Retrieval System”, Journal

of Computer Science 6 (11): 1258-1262, 2010.

[27] NVIDIA CUDA Programming Guide Version 2.0,

available at www.nvidia.com/object/cuda_develop.html.

[28] NVIDIA Corporation: NVIDIA CUDA programming

guide. Jan 2007, available at

http://developer.download.nvidia.com/compute/cuda/2_0/d

ocs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

http://www.nvidia.com/object/cuda_develop.html

