
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication Security, No.8. Mar.2012, www.ijcaonline.org

41

Analyzing Digital Signature Robustness with Message

Digest Algorithms

Rubina B. Patel
Department of CSE

CTAE, MPUAT
Udaipur, India

 Naveen Chaudhary
Department of CSE

CTAE, MPUAT
Udaipur, India

ABSTRACT

A hash function is a deterministic procedure that takes an

arbitrary block of data and returns a fixed-size bit string,

called the message digest, such that any change to the data

will change the digest value. The message digest are being

extensively used for digital signature for online transactions.

In this paper we have analyzed the robustness of various

message digest with respect to digital signature. The repetitive

sequences in the digest will decrease the robustness of the

message digest as it can lead to same message digest for

differing message blocks. In this paper the robustness of

message digest is analyzed with respect to sequence

repetitions as digest with more repetitive sequence are more

likely or have increased probability of generating the same

digest for differing message blocks. We have analyzed the

robustness of various popular message digest algorithms such

as MD5, SHA1, RIEMD160, PANAMA, and TIGER.

Keywords

Message Digest, Hash function, Digital Signature, Secure

communication, Information security

1. INTRODUCTION
A hash code does not use a key but is a function only of the

input message. All hash functions operate using the following

general principles. The input is viewed as a sequence of n-bit

blocks, processed one block at a time in an iterative fashion to

produce an n-bit digest. A message digest algorithm must be

able to withstand all the known types of cryptanalytic attack.

As a minimum, it must have the following properties. [1]

Preimage resistance - Given a hash h it should be difficult to

find any message m such that h=hash (m). In other words we

can say it is a one-way function i.e. a function that is easy and

quick to compute the digest of a message but if given the

digest it should be impossible to derive the message.

Second preimage resistance - Given an input m1 it should be

difficult to find another input m2 — where m1 ≠ m2 — such

that hash (m1) = hash (m2). That means two different

messages must not result in same digest.

Collision resistance - It should be difficult to find two

different messages m1 and m2 such that hash (m1) =hash

(m2). Such a pair is called a cryptographic hash collision. The

birthday "paradox" places an upper bound on collision

resistance: if a hash function produces N bits of output, an

attacker who computes only 2N/2 hash operations on random

input is likely to find two matching outputs. If there is an

easier method than this brute force attack, it is typically

considered a flaw in the hash function [1].

In cryptography ‘hard’ means almost certainly beyond the

reach of any adversary who must be prevented from breaking

the system for as long as the security of the system is deemed

important. In other words ‘hard’ is impossible to break in

one’s life even using all computing facility in the world.

These properties make hash functions useful in cryptography

and other applications as they allow the representation of

objects in a known fixed size.

The hash result provides a unique imprint of a message, and

that the protection of a short imprint is easier than the

protection of the message itself.

Hash functions can also be combined with other standard

cryptographic methods to verify the source of data. When

hashing algorithms are combined with encryption, they

produce special message digests that identify the source of the

data; these special digests are called Message Authentication

Codes. The standard algorithm currently used today is called

HMAC. The HMAC algorithm provides verification of the

source of data, and also prevents against attacks such as the

replay attack [2].

There are various message digest algorithms, although many

have been found to be vulnerable and should not be used.

Even if a hash function has never been broken, a successful

attack against a weakened variant may challenge the expert’s

confidence and lead to its abandonment.

As of today, the two most popularly used cryptographic hash

functions are MD5 and SHA-1. However, to ensure the long-

term robustness of applications that use hash functions, there

is a need to extensively test the robustness of the chosen hash

function.

2. MESSAGE DIGEST HASH

FUNCTION
In modern society information has become a valuable

commodity. It is important to protect the authenticity of

information. This has two aspects: it should be possible to

check who the author is and information has not been

modified by anyone. Message digest algorithms takes inputs

of arbitrary length and produce as output a short string of bits.

Their most important use is for the protection of data

authenticity, but they are a versatile building block and are

also used in conjunction with digital signature schemes, in

addition to other commonly used applications such as

password protection and pseudo-random string generation.

2.1 Applications

2.1.1 Digital signatures
Signatures are used to meet the needs of document recipients

to verify that document is authentic, unforgeable and non-

repudiable.

The process of digitally signing, starts by taking a

mathematical summary (called a hash code) of the message.

This hash code is a uniquely-identifying digital fingerprint of

the message. If even a single bit of the message changes, the

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication Security, No.8. Mar.2012, www.ijcaonline.org

42

hash code will dramatically change. The next step in creating

a digital signature is to sign the hash code with your private

key. This signed hash code is then appended to the message

[2].

Well, the recipient of your message can verify the hash code

sent by you, using your public key. At the same time, a new

hash code can be created from the received message and

compared with the original signed hash code. If the hash

codes match, then the recipient has verified that the message

has not been altered. The recipient also knows that only you

could have sent the check because only you have the private

key that signed the original hash code [2].

2.1.2 Integrity verification
Since two distinct messages are extremely unlikely to

generate identical message digests, one can use this property

of cryptographic hash functions to detect when a message has

been altered. If one takes a binary file and computes a digest

of the file, one can record this baseline digest. In the future,

the digest can be recomputed on the file. If the new digest

differs from the original baseline digest, then one can be

assured that the file has been altered in some way.

The only way that one could compute the digest of an altered

file and have the digests match would be, if one found a

collision. Since collisions are extremely unlikely to occur, if

the new digest matches the original digest, it is extremely

likely that the file has not been altered. Therefore, we see that

the properties of cryptographic hash functions can be used to

verify that files have not been altered; one can quickly

determine file integrity. Notice though that one cannot

determine specifically what contents of the message have

changed, only that something in the message has changed [3].

2.1.3 Message authentication codes
Any time one sends a message masquerading as another user

this is forgery, and as one can see from the above example,

this is a very big problem. In order to prevent this type of

attack, Message Authentication Codes were developed.

Message authentication codes are similar in usage to a

message digest. By taking the message and performing some

computations, one can verify the integrity of the data.

Additionally, message authentication codes are also able to

verify the source of data. Message authentication codes are

specially created message digests that can be created only by

the original sender.

In many instances, when two parties communicate they create

a shared secret key known only to themselves. This shared

key is used to encrypt data during the session. If one assuming

the two parties can safely create a secret key, this key can be

used to generate message authentication codes [3].

2.2 MD5
MD5 Message-Digest Algorithm designed by Ron Rivest

produces a 128-bit (16-byte) hash value. An MD5 hash is

expressed as a 32-digit hexadecimal number. The MD5

algorithm is designed to be quite fast on 32-bit machines [4].

The input message is broken up into chunks of 512-bit blocks

(sixteen 32-bit little endian integers); the message is padded

so that its length is divisible by 512. The padding works as

follows: first a single bit, 1, is appended to the end of the

message. This is followed by as many zeros as are required to

bring the length of the message up to 64 bits less than a

multiple of 512. The remaining bits are filled up with a 64-bit

little endian integer representing the length of the original

message, in bits [4].

The main MD5 algorithm operates on a 128-bit state, divided

into four 32-bit words, denoted A, B, C and D also called the

chaining variables. These are initialized to fixed constants, i.e.

A-01234567, B-89ABCDEF, C- FECDBA98, and D-

76543210.

Also an array of constant K which contains 64 elements each

of 32 bits is initialized. The main algorithm then operates on

each 512-bit message block in turn, each block modifying the

variables. The processing of a message block consists of four

similar stages, termed rounds; each round is composed of 16

similar operations based on a non-linear function F, modular

addition, one with sub-block of message and one with a 32 bit

constant, and left rotation. The size of the digest i.e.128 bits is

small enough to think of a birthday attack [4].

Following is an instance showing, a 33-byte ASCII input and

the corresponding 32 digit MD5 digest:

Text - There is CHF1500 in the blue box.

Digest- 717478e39090cb4d19dc4c6743b0acc5

2.3 SHA-1
SHA-1 produces a 160-bit (20 byte) message digest. Although

slower than MD5, this larger digest size makes it stronger

against brute force attacks.

The original specification of the algorithm was published in

1993 as the Secure Hash Standard, FIPS PUB 180, by US

government standards agency NIST (National Institute of

Standards and Technology). This version is now often

referred to as SHA-0. It was superseded by the revised

version, published in 1995 in FIPS PUB 180-1 and commonly

referred to as SHA-1. SHA-1 differs from SHA-0 only by a

single bitwise rotation in the message schedule of its

compression function; this was done, according to NSA, to

correct a flaw in the original algorithm which reduced its

cryptographic security. [1]

SHA-1 consists of 4 rounds, each containing 20 iterations (i.e.

80 iterations all in all). The algorithm operates on a 128-bit

state, divided into four 32-bit words, denoted A, B, C, D and

E, i.e. 5 variables as compared to 4 variables in MD5. These

are initialized to fixed constants, i.e. A-01234567, B-

89ABCDEF, C- FECDBA98, D-76543210, and E-

C3D2E1F0. An array of constant K[t] which contains 78

elements each of 32 bits is initialized which have only four

constants, one used in each of four rounds.

Following is an instance showing, a 33-byte ASCII input and

the corresponding 40 digits SHA-1 digest:

Text - There is CHF1500 in the blue box.

Digest- 3d4cb01cdbef5ed1b9f5b94b3a628655050f7484

2.4 RIPEMD160
RIPEMD-160 is a 160 bit digest algorithm whose digest are

represented as 40-digit hexadecimal numbers. There also exist

128, 256 and 320-bit versions of this algorithm, called

RIPEMD-128, RIPEMD-256, and RIPEMD-320. [5]

Its primitive operations are: Left-rotation of words; Bitwise

Boolean operations (AND, NOT, OR, exclusive-OR); Two’s

complement modulo 232 addition of words [5].

RIPEMD-160 compresses an arbitrary size input string by

dividing it into blocks of 512 bits each. Each block is divided

into 16 strings of 4 bytes each, and each such 4-byte string is

converted to a 32-bit word using the little-endian convention,

which is a.o. used on the Intel 80x86 architecture; MD4, MD5

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication Security, No.8. Mar.2012, www.ijcaonline.org

43

and RIPEMD use the same convention, while SHA-1 uses the

big-endian convention [5].

In order to guarantee that the total input size is a multiple of

512 bits, the input is padded in the same way as for all the

members of the MD4-family.The result of RIPEMD-160 is

contained in five 32- bit words, which form the internal state

of the algorithm. The final content of these five 32-bit words

is converted to a 160-bit string, again using the little-endian

convention [5].

This state is initialized with a fixed set of five 32-bit words,

the initial value. The main part of the algorithm is known as

the compression function: it computes the new state from the

old state and the next 16-word block. The compression

function consists of 5 parallel rounds, each containing 16

steps. The total number of steps is thus 5 ×16× 2 = 160.

RIPEMD-160 is about 15% slower than SHA-1 and four

times slower than MD4. On a big-endian RISC machine, the

difference between SHA-1 and RIPEMD-160 will be slightly

larger [5].

Following is an instance showing, a 33-byte ASCII input and

the corresponding 40 digit RIPEMD-160 hash:

Text - There is CHF1500 in the blue box.

Digest- 6372e0dc709f9e70d9ac9ac4723be7c944420927

2.5 Panama
Panama is a cryptography primitive which can be used both

as a hash function and a stream cipher.

Panama contains two main elements: A shift register, with 32

cells, each containing a vector with eight 32-bit words, and a

re-circulating mixing function, resembling the f-function in a

block cipher, which operates on a "state" consisting of

seventeen 32-bit words.[6]

There are three fundamental operations that form part of

Panama.[7]

 Panama is reset by setting both the 17-word state and the

contents of the shift register to all zeroes.

 A vector of eight 32-bit words is fed to Panama through a

Push operation. Operations unique to the Push function

are shown by the light dotted lines in the diagram. In a

Push operation, the incoming vector is used as one of the

inputs to the state transition function, and is also used to

XOR with the re-circulating values in the shift register.

 A vector of eight 32-bit words is received from Panama

by means of a Pull operation. In a Pull operation, the 32-

bit words numbered 9 through 16 in the state are used as

the output, and words 1 through 8 are XORed with the

re-circulating values in the shift register. The inputs to

the state transition function both come from stages in the

shift register, one not used for any special purpose in the

Push operation replacing the input, absent from a Pull

operation

When Panama is used as a hash function, the message to be

hashed, followed by a 1 bit and as many zeroes, are needed to

cause the message to occupy an integer number of 256-bit

blocks, is input to Panama through a series of Push operations.

Then, after a number of Pull operations with their output

discarded, so that the effects of even the last block of the

message are fully diffused, the output from a final Pull

operation constitutes the hash. The state transition function of

Panama operates on seventeen, 32-bit words, numbered 0

through 16. [7]

Following is an instance showing, a 33-byte ASCII input and

the corresponding 64 digit PANAMA digest:

Text - There is CHF1500 in the blue box.

Digest-

24d2ef5e157855374196bef71c9d2f99be239eebd7ed44

 4262e5447796cdfbf8

2.6 Tiger
Tiger is a cryptographic hash function designed in 1995 for

efficiency on 64-bit platforms. The size of a Tiger hash value

is 192 bits.

It is strong and fast: as fast as SHA1 on 32-bit processor, and

about three times faster on 64-bit (DEC Alpha) processor. It is

also expected to be faster than SHA1 on 16 bit processor,

since SHA1 is optimized for 32-bit machines, while Tiger is

designed to work adequately on many word sizes [8].

In Tiger all the computations are on 64-bit words, in little-

endian/2-compliment representation. We use three 64-bit

registers called a, b, and c as the intermediate hash values.

These registers are initialized to h0 which is: a =

0x0123456789ABCDEF, b = 0xFEDCBA9876543210, c =

0xF096A5B4C3B2E187 [8].

The core of Tiger basically has core is three rounds, each of

which uses eight lookups into 8-to-64 bit S-boxes to provide a

strong nonlinear avalanche plus a number of register operation

to increase diffusion and make differential attacks harder [8].

Following is an instance showing, a 33-byte ASCII input and

the corresponding 48 digit TIGER digest:

Text - There is CHF1500 in the blue box.

Digest-

24d2ef5e157855374196bef71c9d2f99be239eebd7ed44

 4262e5447796cdfbf8

3. EXPERIMENTAL RESULTS
We have used HashCalc tool [9] to produce different digests

from different algorithms. It supports 12 well-known and

documented hash and checksum algorithms: MD2, MD4,

MD5, SHA1, SHA256, SHA384, SHA512, RIPEMD160,

PANAMA, TIGER, ADLER32, and CRC32.From these we

have used 5 popular algorithms such as MD5, SHA1,

RIPEMD160, PANAMA, and TIGER.

The experimentation is done on 4 different data values: 1)

Text strings of size 32 character. 2) Hexadecimal strings of

size 16 character. 3) Text files of size 17 bytes 4) Image files

of size 606 KB.

The size of hash basically gives the strength of the hash

function, as longer the digest, it is believed that it will be

harder to crack it or in other words it will be more difficult to

find a different message (m’) whose hash is same as that of

the original message (m).

However here in this work we are trying to establish the

strength of a message digest with respect to its size for

constant size digest the strength of the digest is mainly

governed by how many unique characters it includes in the

digest, as more repetitive character signify that more different

messages are likely to produce the similar looking message

digest.

Based on the above mentioned hypothesis the experimented

results for various popular message digest functions such as

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication Security, No.8. Mar.2012, www.ijcaonline.org

44

MD5, SHA1, RIPEMD160, PANAMA, and TIGER are

presented in figure 1, with respect to digest size.

Fig 1: Graph showing number of character repeated in

digest of different algorithms

Figure1 cleanly show that MD5 has character repetition

percentage of 82.8125, which has minimum characters

repeated of all the algorithms analyzed.

SHA1 has character repetition percentage of 93.75. RIPEMD-

160 has character repetition percentage of 95. Although both

(SHA1 and RIPEMD-160) have output of 40 digits still SHA-

1 proves to be a better algorithm in terms of repeated

character.

PANAMA has character repetition percentage of 99.21875,

which is the worst of all, and almost every character of the

digest is repeated. TIGER has character repetition percentage

of 95.31225, which is an average value between the extreme

cases algorithms.

The MD5 with its limited digest size shows that it performs

best as far as avoiding character repletion is concerned. In

other words we can say that with limited size constraints the

MD5 function as such has good mathematical properties to

generate unique digest for similar looking messages.

4. CONCLUSION
On the basis of experimental results we can conclude that

MD5 has the least percentage of repeated character, and so

contains good mathematical properties to produce differing

message digest for similar looking messages even with the

constraint of limited digest size.

The conclusion drawn from this work can be helpful in

designing more robust message digest functions for digital

signature or for further strengthening the existing hash

function with large hash size by including the mathematical

design properties of MD5 as MD5 even with its size

constraint encompasses many good properties to generate

unique digests.

5. REFERENCES
[1] Kahate, Atul 2003. Cryptography and Network Security.

Second edition. Tata McGraw-Hill Pvt.

[2] Curry, Ian March 2001 An Introduction to Cryptography

and Digital Signatures. Version 2.0

[3] Silva, John Edward January 15, 2003 An Overview of

Cryptographic Hash Functions and Their Uses. GIAC

Security Essentials Practical. Version 1.4b. Option 1

[4] Rivest, R. April 1992. The MD5 Message-Digest

Algorithm. MIT Laboratory for Computer Science and

RSA Data Security, Inc.

[5] CryptoBytes, autumn 1997. The technical newsletter of

RSA Laboratories. A division of RSA Data Security, Inc

RSA Laboratories Volume 3, Number 2.

[6] Rompay, Bart Van, June 2004. Analysis and Design of

Cryptographic Hash functions, Mac algorithms and

Block ciphers”

[7] http:// www.quadibloc.com/ crypto/co4821.htm

[8] Ross, Anderson and Eli, Biham, Tiger: A Fast new hash

function” by

[9] http://www.slavasoft.com/?source=HashCalc.exe

