
IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

45

 Software Selection based on Quantitative Security Risk

Assessment

Ruma Das

Engineering Management and
System Engineering

George Washington University
Washington DC, USA

Shahram Sarkani

Engineering Management and
System Engineering

George Washington University
Washington DC, USA

Thomas A. Mazzuchi

Engineering Management and
System Engineering

George Washington University
Washington DC, USA

ABSTRACT

Multiple software products often exist on the same server and

therefore vulnerability in one product might compromise the

entire system. It is imperative to perform a security risk

assessment during the selection of the candidate software

products that become part of a larger system. Having a

quantitative security risk assessment model provides an

objective criterion for such assessment and comparison

between candidate software systems. In this paper, we present

a software product evaluation method using such a

quantitative security risk assessment model. This method

utilizes prior research in quantitative security risk assessment,

which is based on empirical data from the National

Vulnerability Database (NVD), and compares the security risk

levels of the products evaluated. We introduced topic

modeling to build a security risk assessment model. The risk

model is created using Latent Dirichlet Allocation (LDA) to

classify the vulnerabilities into topics, which are then used as

the measurement instruments to evaluate the candidate

software product. Such a procedure could supplement the

existing selection process, to assist the decision makers to

evaluate open-source software (OSS) systems, to ensure that it

is safe and secure enough to be put into their environment.

Finally, the procedure is demonstrated using an experimental

case study.

General Terms

Risk Management, Measurement, Security.

Keywords

Software Security, quantitative risk assessment, Software

evaluation, Topic Modeling, LDA.

1. INTRODUCTION
The system engineering approach to selecting a secure system

ensures that the system selected meets the mission of the

organization and the security level needed by the missions [1].

For example, a system selected to hold patient data must be

secure enough to protect patient data and provide necessary

controls to prevent unauthorized access. As per International

Council on Systems Engineering (INCOSE), system

engineering is “an interdisciplinary approach and means to

enable the realization of successful systems” [2]. For a system

to be successful, a security risk assessment of the software

product that will eventually become part of a larger system is

important. In a software system developed in-house, there is

an opportunity to make it secure by taking proactive measures

during the entire development life cycle. In many cases, the

security assessment is conducted in the development or

verification and validation (V&V) phase through vulnerability

scanning [3], secure code review, threat modeling, etc.

However, when an off-the-shelf or open source software

product is evaluated, the system engineers have no control

over design and build phase. In this case, a security risk

assessment becomes even more essential and must be

conducted upfront during the initial evaluation. As pointed out

by Schneidewind, an insecure COTS or OSS product may be

a weak link in the system environment [4] and impact the

reliability of the entire system. In addition to black box testing

and operation testing, impact on other systems in the

environment must be tested using fault injection testing on the

candidate OSS product. Recent research has presented a

framework to ensure that security is actively considered

during the software development life cycle [5]. However, for

an OSS, such an opportunity is not available. Therefore it is

more critical that security be evaluated before implementing

the OSS in an operational setting.

Security flaws in a software product increase the security risk

to the whole environment in which it operates. When

evaluating an open or closed source off-the-shelf software

system for use, the software security assessment must be

conducted to ensure that the product has a relatively low

security risk. The term „software product‟ in this paper refers

to a web-based database-driven application. When comparing

multiple candidate software products, an objective measure is

needed for such evaluation. The quantitative security risk

assessment is gaining momentum in research for decision-

making, risk assessment and resource allocation [6-12]. Prior

studies in quantitative software security risk assessment have

mainly focused on: browsers, application servers, database

servers, individually or on entire network topology. A new

study is needed to identify how we can apply or extend such a

model and metrics to compare and select software products

such as web-based applications.

This study introduces a procedure to select from a multitude

of OSS products and is based on a quantitative security risk

assessment. The relevance of the research can be observed in

a case study performed by Austin et al., which evaluated

multiple open source electronic health record systems. The

researchers detected approximately 1321 issues through static

analysis and 710 through dynamic analysis[13]. Security

assessment during OSS selection has been proposed in prior

works[14]. However, skilled security professionals are rarely

used during the initial selection process of a software system.

Most security assessments are performed after the system has

been implemented. The framework discussed below can be

utilized by practitioners to augment the existing security

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

46

assessment process during the early stages of software product

evaluation.

Our approach investigates the application of topic models for

creating the quantitative security risk assessment model. The

reason for choosing the approach of having the machine

generate a list of topics is that not all vulnerabilities have been

categorized in NVD using CWE (Common Weakness

Enumeration) groups[15]. As a result, it is difficult to

determine the actual likelihood or frequency, and thereby,

severity of a vulnerability group or threat. Finally, we selected

the Design Science Research Methodology (DSRM) to

perform this study. This research methodology selection is

based on our goal to propose an artifact to support the

evaluation of off-the-shelf or OSS software products before

adoption using the quantitative security risk assessment

model. The activities in our research have been outlined

below, adopting the steps mentioned by Peffers et al. for

presenting the information derived through Design Science

Research Methodology (DSRM) [37].

The primary contributions of this paper are:

1) Demonstration of usage of topic modeling for

vulnerability grouping.

2) Identification of dimension for security assessment

of candidate software products

3) Development of a method to enable practitioners to

review candidate products objectively

4) Outline of an experiment to perform the procedure

The remainder of the paper is organized as follows: Section 2

provides background information and definitions. Section 3

outlines the prior work on which this research is based.

Section 4 provides reasons for research methodology

selection. Section 5 describes the research methodology.

Section 6 presents results and discussion. Section 7 states

limitations and Section 8 concludes the paper.

2. BACKGROUND
This section provides brief background information on the

concepts used in this paper. For example, the paper presents

„Topic Modeling‟ as a method for clustering the data and

„Design Science‟ as a research methodology. We describe

these concepts in this section.

2.1 Topic Modeling
Topic Modeling is used to analyze large corpora of text, in

order to categorize them into clusters identified by a set of

terms or tags. The term topic modeling refers to the technique

of identifying themes in an unstructured text [16]. It falls

under the category of unsupervised machine learning and

probabilistic modeling [17]. Latent Dirichlet allocation

(LDA) algorithm, a type of topic modeling, considers the

input text as a bag of words and uses Bayesian inference to

learn the distribution for topic grouping. Due to its ease of

use, it has found application in a number of areas. Asuncion et

al. applied the topic modeling technique to solve the problem

of software artifact traceability [18]. Linstead et al. applied

the topic model to extract „concepts‟ or functional topics from

the code[19]. In addition, a few of the other varied

applications include potential for speech recognition[20],

understanding social network ecosystems[21], investigating

software evolution[22], analyzing genomic data[23], etc. The

essence of the algorithm is its power to extract the semantic

nature of the text. However, the challenge is then to analyze

the meaning of the latent topics that emerge. Different

automatic labeling algorithms have been proposed to solve

this issue [24, 25]. Hindle et al. performed automatic topic

labeling by assigning labels to the topic groups generated by

the LDA algorithm by matching with a predefined word list.

These word lists were derived from the ontology for non-

functional requirements designed by prior research, and the

ISO9126 list. This provided a methodology to perform

domain specific labeling. There are some limitations to LDA.

One of the limitations is the requirement that the number of

topics must be predefined before running the algorithm. If the

number of topics is small then the topic clusters formed are

too generic, while if they are large then terms overlap between

the topic clusters. Another limitation is that interpretation of

the topic cluster semantics is left to the user.

2.2 Design Science Research Methodology
Design Science Research Methodology (DSRM) is common

in the field of information system. However, it is rarely found

in system engineering. Design science is a problem-solving

research paradigm and results in the creation of an artifact to

solve the problem. Hevner et al. proposed the design-science

paradigm for information system (IS). IS being an applied

science field, its research often contributes by creation of

“new and innovative artifacts” [26]. The authors outlined the

boundaries of DSRM by mentioning 2 processes and 4

artifacts. The processes are “design and evaluate.” The

artifacts are “constructs, models, methods, and instantiations”

[26]. The primary purpose of artifacts created using DSRM is

to “address unsolved problems” and the value is based on the

“utility provided in solving those problems” [26].

2.3 National Vulnerability Database (NVD)
The National Vulnerability Database [27] produced by NIST

Computer Security Divisions contains publicly available

vulnerability data. Currently, there are over 44,000 Common

Vulnerabilities and Exposures (CVE) entries in NVD. NVD

has been used in prior research for developing vulnerability

detection/discovery models or VDM[28]. In another related

study, NVD data has been utilized by Schryen et al. to

propose a software metrics named „Patch index‟[29]. They

used NVD data to compare the security of the open source

versus closed source software, by categorizing the

vulnerability into three classes (high, low, and medium) and

calculating the patch index based on number of patched

versus un-patched vulnerabilities. NVD has also been used to

build decision models that can be supplemented by user input,

such as context information to allow for resource and effort

management, through prioritization [30]. Fruhwirth et al.

propose a security model where the temporal and

environmental context information is provided by the

practitioners, which allows for recalculation of the CVSS

score and re-prioritization of the vulnerabilities. Chung et al.

demonstrated a procedure for security risk assessment by

cross-referencing the vector composed of the attributes “Data,

Server and Application” with the vector “confidentiality,

integrity, and availability”[31]. Another research used NVD

data to propose a similarity based measurement that can be

used for patching, mitigation and other security management

areas [32]. In this research, An et al. utilized NVD along with

Ontology for Vulnerability Management (OVM) to determine

similarity between vulnerability using the hierarchical

similarity algorithm. The characteristics considered for the

similarity algorithm were “Type, Product, Access Vector,

Access Complexity, Authentication, Confidentiality Impact,

Integrate Impact and Availability Impact” [32].

NVD data contains information about different vulnerabilities

in COTS, such as database servers, application servers,

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

47

browsers, etc. We integrate this information to determine the

overall security composition of a custom software product and

its potential implementation environment.

3. RELATED WORK
In a recent research, Neuhaus et al. used topic modeling to

study the national vulnerabilities database (NVD) entries and

identify emerging trends[33]. They found that classification

done by the topic modeling technique LDA mostly agreed

with the categorization done by MITRE. In this paper, we

follow this approach to identify topic clusters from NVD

entries. The rationale behind choosing an unsupervised

learning problem such as LDA is that not all categories have

been labeled as per CWE (Common Weakness Enumeration)

category [15] in NVD. Using LDA, our goal is to discover

groups of similar vulnerabilities within the data by clustering

as found by Neuhaus et al. [33]. The benefit of using topic

modeling for creating a risk assessment framework is it can be

used to evaluate results from multiple different vulnerability

scanners which produce textual output. Each scanner may

have its own description of the vulnerabilities, which can be

categorized into topics by using the topic modeling technique

and assessed against the model created using the NVD entries.

In a prior research, Wang et al. proposed an ontology-based

security assessment of the software products [7]. The

products evaluated in the paper as a case study were web

browsers such as Mozilla Firefox 3 and Internet Explorer 7.

The two key questions in the paper were: “1) given a software

product, what is the trustworthiness of it? 2) Among the

similar products, which one is the best product in terms of

security?” The questions that we propose in this research are

similar but the software products are different. The software

products we plan to evaluate are custom web-based, database-

driven software applications. The security scores for these

products are not likely to be present in NVD and need to be

derived based on categories of vulnerability found. This

research plans to fill this gap by proposing a framework for

calculating the score of a custom database-driven software

system.

Mkpong-Ruffin et al. (2007) proposed a software security risk

assessment model using k-means clustering algorithm to

group the vulnerability, and then through CVSS scores

calculated the loss expectancy for each group [1]. The average

CVSS scores were then calculated using the average growth

rate for each month for the selected cluster. Finally, using the

growth rate along with the average CVSS score, the predicted

impact value was calculated for each cluster. They validated

this proposed framework by generating a list of vulnerabilities

using Microsoft‟s Threat Analysis and Modeling Tool

(TAMT) and comparing with their own model. Their

procedure proposed predictions of loss expectancy during

design time using modeling tool output and the risk model

built by them. The goal of our research is also to build such a

quantitative security risk model; we plan to use the topic

modeling technique instead of k-means clustering.

The procedure used in this research is similar to that used by

Houmb et al.[3] The procedure was evaluated using a case

study to demonstrate the security risk level assessment of a

network. The procedure followed was: ”Step 1: Identify

vulnerabilities and potential fault introduction sources. Step 2:

Estimate frequency and impact of vulnerabilities using CVSS.

Step 3: Derive risk level from frequency and impact

estimates” [8]. Our research uses a similar procedure but

applies to a software product.

In a related research by Sui et al., the authors developed a

framework for software security metrics score calculation

based on quantitative criteria for integrality, availability and

confidentiality [11]. They used the vulnerability scanner

Nessus to generate a list of vulnerabilities and compare

against their custom quantitative scoring criteria to calculate a

security score. In our research, we also plan to use a

vulnerability scanner, except we plan to use the impact score

and threat likelihood value derived from NVD data to

generate the security score.

Table 1 provides a brief overview of prior work on which we

have based our paper.

Table 1. Prior Research in Quantitative Software Security Risk Assessment

 [1] [2] [3] [4] [5]

Name SSRAM (Software

Security Risk

Assessment Model

Security Metrics for

Software System

Risk Level using

CVSS estimates of

frequency and

impact

SSAS (Software

Security Assessment

System)

VEXA : Software

Vulnerability

Extractor and

Analyzer

Data Source NVD NVD NVD NVD OSVDB and NVD

Technique K means Clustering Custom Calculation

based on CVSS

BASE SCORE and

Number of

Months(Frequency)

Bayesian Belief

Network (BBN)

topology

Custom Calculation

based on CVSS and

VRSS

Sum the impact and

exploitability score.

Apply weights

based on the

relevance of

components

Application In Design Phase Security metrics

score calculation for

products such as:

IE6 , Mozilla etc

Operation Operation Comparing

Components(server,

OS, database etc)

for web serving

systems

Evaluation Case study Experiment Case study Experiment Case Study

Quantitative

metrics

Predicted Loss

Expectancy

Predicted Impact

Score Predicted

Base Impact,

And Frequency

Frequency and

impact score

Base Impact,

Exploitability

Exploitability

and impact level

from CVSS

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

48

 [1] [2] [3] [4] [5]

Frequency of

Occurrence

Tools used TAMT, SQL Server

Integration services,

MS Analysis studio

None Hugins, Nessus, Nessus None

Artifact Produced Model Equations Method, Equations, Methods, Equations,

Tool

VEXA tool

4. Methodology Rationale
In this section we provide a rationale for the selection of

Design Science Research Methodology (DSRM). The

framework for our research has been shown in Figure 1.

4.1 Overview
Our research is carried out using guidelines provided by

Hevner et al. [26] and presented using the steps proposed by

Peffers et al. [37] for this methodology. Design Science (DS)

research methodology is common in the field of information

system. Hevner et al. categorized artifacts created through DS

methodology into constructs, models, methods and

instantiation. Table 2 provides examples of each of these

artifact categories.

Table 2: Artifacts for Design Science Research [6]

Artifacts Example

Constructs vocabulary and symbols

Models abstractions and representations

Methods algorithms and practices

Instantiations implemented and prototype systems

Fig 1. Design Science Research Process adapted from [7]

4.2 Rationale for DSRM
Design science research is very similar to action research

since both attempt to identify and solve a problem. However,

there are important differences between the two. Action

research is a change-oriented approach that incorporates close

collaboration between researcher and practitioners [38].

Design science research does not assume such collaboration.

In design science research methodology (DSRM), the

researcher identifies the issue, develops the theory and finally

produces an artifact using the theory to solve the problem.

Unlike DSRM, the initiator of the study in action research is

often the practitioners. Our research is based on solving a

problem by forming a procedure. The practitioners are not

involved and therefore, DSRM is an appropriate methodology

to follow.

As noted by Peffers et al., “Design Science is of importance in

a discipline oriented to the creation of successful artifacts”

[39]. The primary purpose of artifacts created using design

science is to “address unsolved problems” and the value is

based on the “utility provided in solving those problems” [26].

Since the goal of our research is to create a method to select

between multiple software products based on quantitative

software security risk assessment, DSRM is an ideal

methodology to follow. Finally, design science is a problem-

solving paradigm and thus supports our goal of solving the

issue of selecting secure OSS products.

5. DSRM Steps

5.1 Problem Identification and Rationale
Recently several quantitative security risk assessment models

have been proposed, many of which use vulnerability data

from public databases such as NVD, OSVBD, etc. Even

though vulnerability data has been used for predicting

exploits, managing patching, and evaluating network security

risks, it has rarely been applied to software selection. Since

vulnerability is a type of defect that reduces the reliability of

the system, filling this gap would help in the evaluation and

selection of custom or open source software systems.

Existing quantitative software security risk models fall short

since they evaluate individual COTS product and topology

made of COTS, like servers, databases, etc. Some of them

have clustered the vulnerability and applied it to the software

design process[6]. However, in our review, we have not found

any instrument providing objective measurement to help with

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

49

assessment of candidate software products such as web-based

application.

The rationale for this research is to provide an artifact that can

assist practitioners in making informed decisions based on

empirical data and objective value. The primary research

questions (RQ) evaluated were:

RQ1: What are the essential dimensions for evaluating a

candidate software product before selection?

RQ2: How do we analyze the security risk level of a potential

software product?

RQ3: Can we use a quantitative security risk assessment

model to compare and select between custom software

products?

5.2 Objective of the Solution
The objective of the solution is to provide a method using the

quantitative security risk assessment model based on prior

research and to demonstrate its use as an instrument that can

provide quantitative value for objective decision making in

software selection.

5.3 Design and Development
The proposed method consists of the following steps:

1) Collect NVD data and cluster using topic modeling

methods

2) Obtain the categories of vulnerability that the

vulnerability scanner tool can report

3) Label the topics found in step 1, using the categories

from the vulnerability scanner. This results in the

quantitative security risk assessment model

4) Inspect and find system requirements for the

candidate software product. Identify the operating

system, database servers, web servers and other

components needed, their brand and version

5) Determine the security score of the system

requirement components

6) Next for each product (assuming OSS product),

download the code and perform static analysis. Use

the quantitative security risk assessment model to

determine impact score and frequency

7) Next install the OSS and perform dynamic analysis

using web application scanner. Use the quantitative

security risk assessment model to determine impact

score and frequency

8) Repeat this for all candidate products and compare

the results.

Fig 2. Model for OSS selection using Quantitative Security

Risk Analysis

Figure 2 shows the design of the model for OSS selection

using quantitative security risk analysis. To design the

artifacts, we first investigated the sources of security risk of a

software product. A software product has security risk due to

the code base, the COTS product (servers, OS, etc.) it is

hosted on and the environment it is installed on. Thus, we

propose two primary dimensions for evaluating the security

risk of the candidate software product: System Requirement

Risk and Product Design Risk, as shown in Figure 3.

5.3.1 Dimensions of Risk

5.3.1.1 System Requirement Risk
A software product comes with system requirements, which

specify the operating system, database server and web server

on which it can operate. These are sources of risk and can be

further subdivided into:

Host Risk: This is the first sub-dimension and is related to the

COTS product on which it is hosted. These are operating

systems (OS), web servers and database servers. Each of them

is a source of security risk based on the number of

vulnerabilities that reside within.

Environment Risk: The next risk sub-dimension is due to the

environment in which the software product might be installed.

A public facing server is more risky than one installed within

the firewall and closed to public access.

Protection Level Risk: The final risk sub-dimension is a

subjective score that the practitioners can assign based on

knowledge about the protection controls that exists in terms of

people, software and process on the host.

5.3.1.2 Product Design Risk
The second dimension of risk is due to the flaws in the

software caused by programming errors such as integer

overflow or buffer overflow. These can be detected using

static and dynamic analysis to identify a list of potential

vulnerabilities.

Fig 3. Risk assessment dimensions for the candidate

product

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

50

The next section describes the quantitative security risk

assessment model development process.

5.3.2 Development
Next, we obtain the empirical data to develop the quantitative

security risk model. The development process consists of 2

primary tasks: data collection and model building. To build

the model, we grouped the vulnerabilities into clusters using

Topic Modeling and then estimated the impact using the

average base score, and severity using the number of

vulnerabilities in each cluster.

5.3.2.1 Data Collection
The empirical data for building the risk model was obtained

from the National Vulnerability Database (NVD). The data is

available as a XML file named nvdcve-2.0-[year].xml, where

the year indicates a number from 2002 to 2012. We built a

perl script to extract the cve_id, published date, score and

summary field and loaded it to a database server. In addition,

a CSV file was created with one line per CVE entry. We refer

to this file as the extracted NVD file in the rest of this paper.

5.3.2.2 Topic Modeling
We applied the Latent Dirichlet allocation (LDA) technique to

the extracted NVD file using Stanford Topic Modeling

Toolbox[37]. Known as a type of unsupervised machine

learning technique, LDA considers the input text as a bag of

words and uses Bayesian inference to learn the distribution for

topic grouping. To build the LDA model, we applied a simple

English tokenizer and removed English stop words like „the,‟

„of,‟ etc. We considered a summary text with 2 or more terms.

We filtered out terms that appear in less than 4 topics.

One of the parameters essential for LDA is “number of

topics.” We ignored non-words and non-numbers. We ran the

LDA model using the CVB0 algorithm, looping over the

number of topics ranging from 10 to 100 and calculating the

perplexity score. The model was trained using 80% of the data

and tested using 20% of the data. Finally, we chose 40 as the

number of topics since it gave the least amount of overlap and

least amount of generic topics. Figure 4 shows the graph

demonstrating the choice of optimum topics number.

Fig 4. Topic Selection Evaluation

The output of this process resulted in multiple files of which

we used only two. The first file contained the topic groups and

associated terms as shown in Table 3. The second file

contained indicators showing association between the CVE

entry and the associated topic distribution.

Table 3. Topics and Top 10 Related Terms Output From

LDA toolbox

Topic Terms

Topic

24

string, function, arbitrary, execute, allows, attackers,

format, remote, commands, shell, vulnerability,

code, metacharacters, properly, handled, command,

variable, argument, program, functions, earlier,

demonstrated, specifiers, using, cgi, context-

dependent, variables, query, php, certain, strings,

arguments, allow, line, option, expression, used,

perl, regular, possibly

Topic

26

server, web, remote, attackers, allows, http, request,

url, apache, source, redirect, determine, iis,

manager, requests, sites, page, application, open,

uri, default, proxy, network, node, tomcat, jsp, mail,

interfacepages, administration, sap, scripts,

coldfusion, existence, error, contains

Topic

23

script, scripting, web, xss, cross-site, html, inject,

arbitrary, attackers, remote, vulnerability, allows,

parameter, earlier, index.php, search, page, action,

parameters, cms, query, search.php, uri, error, title,

_info, msg, path, portal, different, insert, login,

theme, keyword

The extracted NVD file and the output from the LDA toolbox

are then loaded into the database server for calculation of

estimated score and the frequency of the topic group. We used

SQL Server Express for data storage and manipulation. The

extracted NVD file is loaded into a table with attributes

cve_id, published date, score and summary. The output from

the LDA toolbox is also loaded into the database server. This

data is parsed so that we have a table showing the relationship

between CVE_ID, Topic Name and Associated Probability

Distributions. Since there are many topics per CVE, we need

to determine the most relevant topic. For each CVE, we select

the topic with the highest probability distribution. This gives

us a vector consisting of CVE_ID, Topic Name, Score and

maximum probability distribution as shown in Table 5.

Table 5: Vulnerability and Topic with maximum

probability distribution

cve_id Topic

Name

Score Max Probability

CVE-2008-2012 Topic

02

7.5 0.8308502

CVE-2012-0005 Topic

28

6.9 0.8247771

CVE-2012-0011 Topic

08

9.3 0.8780806

CVE-2012-0018 Topic

08

9.3 0.9353617

CVE-2012-0019 Topic

08

9.3 0.9687625

CVE-2012-0020 Topic

08

9.3 0.9687625

CVE-2012-0056 Topic

19

6.9 0.8364574

CVE-2012-0069 Topic

02

7.5 0.9886265

CVE-2012-0072 Topic

27

5 0.9918746

0

200

400

600

800

1000

1200

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

P
er

p
li

x
it

y
 S

co
re

Number of Topics

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

51

5.3.2.3 Labeling the topics
The LDA toolbox generated the topics and the associated

terms but their interpretation remained to be done. A number

of algorithms has been presented in order to interpret the topic

clusters. Hindle et. al [25] generated the word list with

category names, using different sources and then labeled the

topic if any of the words from the word list categories

matched the topic terms.

We attempted to assign labels using 2 methods. In the first

method, for each topic cluster, we counted the number of

CVE per CWE. We labeled a topic cluster with a CWE name

if it had a maximum number of CVEs of that type. In the

second method, we obtained the categories from our

vulnerability scanner and applied the same topic model

created earlier using NVD topic to assign them to topic

groups. For each vulnerability scanner category, we found the

topic that represented the highest probability distribution.

Table 4 is a sample of the results for this method, for topics

shown in Table 3. Both attempts were not very accurate and

needed manual intervention. In both cases, manual review was

needed to fix a certain percentage of the topics.

Table 4. Mapping of Topic to Skipfish Vulnerability

Topic Skipfish Reported Vulnerability

Topic 24 Format string vulnerabilities.

Topic 26 Explicit SQL-like syntax in GET or POST

parameters.

Topic 23 Stored and reflected XSS vectors in document

body (minimal JS XSS support present).

5.4 Demonstration and Evaluation
To evaluate the measurement tool, we selected open source

software openEMR[12] and openMRS[13] as candidate

software products. We selected open source products

belonging to same function domain. Both of them are open

source health record systems. openEMR is developed in PHP

with MySQL as the backend. openMRS is developed in java

with MySQL as backend. Both run on a MySQL database

server. We setup the systems in our test environment: one on

Apache Http server and the other on Apache Tomcat server,

as specified by their respective system requirement

documentation. The candidate systems were scanned for

vulnerabilities using the open source web application scanner

skipfish[41]. The host operating system for both the software

products was Windows 7.

5.4.1 System Requirements Risk Analysis

The steps in the process are as follows:

Step 1: Inspect system requirements and identify major COTS

components such as database server, web server, etc.

1. For openMRS, we identify the following system

requirements to host the product: Apache Tomact 6

and MySQL 6

2. Find base score; exploit score and the number of

vulnerabilities for each component

.

An example for the component MySQL is given in Table 6.

Table 6: Sample component base score, exploit score and

the number vulnerabilities

CVE ID Base score Exploit score

CVE-2004-0388 2.1 3.9

CVE-2004-0627 10 10

CVE-2004-0628 10 10

CVE-2005-1636 4.6 3.9

CVE-2005-2558 4.6 3.9

CVE-2005-2572 8.5 6.8

CVE-2005-2573 5 10

CVE-2006-0369 2.1 3.9

CVE-2006-0903 4.6 3.9

1. Calculate the component security score as follows

using the impact score formula proposed by Sui et

al.[4]

Component Security Risk Score

=
 𝐵𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒 𝑋 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 𝑆𝑐𝑜𝑟𝑒𝑛
𝑖=1

𝑛
 (1)

Where n = number of vulnerabilities in the component

In addition we need to consider the exposure score. An OSS

product installed on a public facing server is more vulnerable

than on a private server. Therefore, we assign a weight to

each based on exposure.

Finally, we need to consider the protection level of the

environment where it will be installed. We provided three

values for practitioners to select from based on their

professional judgment.

Total System Requirement Security Risk score = Component

Score * Exposure Weight * Protection Level

Table 7. openMRS System Requirements Risk Score

Host

Compo

nents

Security

Risk Score

Exposu

re

Weight

Protectio

n level

Apache

Tomcat

6

C1 =41.63 External

E1=2

Low

P1=3 C1*E1*P1

= 249.8

MySQL

6

C2=33.81 Internal

E2=1

High

P2=1

C2*E2*P2

= 33.81

Apache

Windo

ws 2008

C3=13.33 External

E3=2

Medium

P3=2 C3*E3*P3

= 53.32

Tomcat

Windo

ws 2008

C4=13.33 Internal

E4=1

High

P4=1 C3*E3*P3

= 13.33

Total System Requirement Security Risk score
350.26

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

52

Table 8. openEMR System Requirements Risk Score

Host Component

Score

Exposure

Weight

Protection

level

Apache 2.2 37.59 External=2 Low=3 225.54

MySQL 6 33.81 Internal=1 High=1 33.81

Apache

Windows 7

13.33 External=2 Medium=2

53.32

Tomcat

Windows 7

13.33 Internal=1 High=1

13.33

Total Component Security Risk score 326.00

Practitioners can also perform an if-then analysis by changing

the operating system type, exposure score and protection

level.

5.4.2 Product Design Risk Analysis
To find the security risk due to coding flaws, we conducted

static and dynamic analysis.

5.4.2.1 Dynamic Analysis
We conducted dynamic analysis using a web application

scanner for the candidate products. Below is a list of

representative vulnerabilities found by dynamic analysis of

openMRS using SkipFish[41].

Table 9. openMRS Dynamic Analysis

Name of the Representative

Threat

Number of

Vulnerabilities Found in

Candidate 1 (openMRS)

Integer overflow vector 4

Incorrect or missing charset 7

Incorrect or missing MIME type 1

HTML form with no apparent

XSRF protection

2

We found that some of these had direct mapping to CWE but

others did not, for example, integer overflow maps to CWE-

190 whose parent is CWE-189 - Numeric Errors. Certain

vulnerabilities in NVD have been mapped to CWE-189 -

Numeric Errors, thus enabling us in extracting average impact

score and frequency score value. Others such as „Incorrect or

missing charset‟ had no mapping in CWE used by NVD.

However, using the previously trained topic model, we were

able to assign a topic to each of the skipfish vulnerability

types.

Table 10. Assignment of a topic to each of the skipfish

vulnerability types

Name of the Representative Threat Topic

Integer overflow vector Topic 37

Incorrect or missing charset Topic 01

Incorrect or missing MIME type Topic 00

HTML form with no apparent XSRF protection Topic 01

Next we applied the method outlined by Wang et al. [35] to

find the security metric score.

Count the number of vulnerabilities per topic and the

frequency as shown in Tables 11 and 12.

Table 11. Topic vulnerability count and date range

Topic Vulnerability

Count

Min Date Max date

Topic 01 1153 2/14/1998 5/24/2012

Topic 30 720 11/11/1988 5/24/2012

Topic 02 5083 11/1/1995 5/23/2012

Table 12. Topic vulnerability count and Frequency

Topic

Name

Vulnerability

Count

V

Number of

Months

Min Date-

Max Date

M

Frequency

Per

Month

V/M

Topic 00 604 187 3

Topic 01 1153 171 6

Topic 37 1393 152 9

Average Impact Score for each Topic Cluster is calculated as:

Average Score = 𝑏𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖=1

Where n=number of vulnerability in the Topic.

Table 13. openMRS Topic Average score and Frequency

Topic

Name

Average

Score

Frequency

Per Month

Topic 00 5.812582 F1=3

Topic 01 5.763399 F2=6

Topic 37 7.635104 F3=9

Weight in Table 14 is the Number of Vulnerability Found in

Candidate 1 for each topic.

Table 14: openMRS vulnerability weight analysis

Topic

Name

Average

Impact Score S

Probability

P

Weight

(W)

Topic 00 S1=5.81 P1=F1/F1+F2+F3=0.17 W1=1

Topic 01 S2=5.76 P2=F2/F1+F2+F3=0.33 W2=9

Topic 37 S3=7.64 P3=F3/F1+F2+F3=0.5 W3=4

Product Design Risk Score= S1*P1*W1 + S2*P2*W2

+ S2*P2*W2 = 33.53

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

53

5.4.2.2 openEMR
Next, we evaluate the second candidate software product. This

product has a different system requirement risk score since it

is installed on a different web server. The Table 15 shows a

sample out obtained through dynamic scanning of openEMR.

Table 15: Sample openEMR Dynamic Analysis

Name of the Representative

Threat

Number of

Vulnerabilities Found in

Candidate 1 (openEMR)

Integer overflow vector 4

Incorrect or missing charset 8

Incorrect or missing MIME type 1

HTML form with no apparent

XSRF protection

2

In the case of openEMR, for product design risk analysis, the

types of vulnerability categories reported in our experiment

remained the same. Thus, only the number of vulnerabilities

(weight w) reported was different.

Table 16. openEMR vulnerability weight analysis

Topic

Name

Average Score

S

Probability

P

Weight

(W)

Topic 00 S1=5.812582 P1=0.166667 W1=1

Topic 01 S2=5.763399 P2=0.333333 W2=10

Topic 37 S3=7.635104 P3=0.5 W3=4

Security Metric Score= S1*P1*W1 + S2*P2*W2

+ S2*P2*W2 = 35.45

Finally at the end of the procedure, we have the following

security scores for the two candidate products for comparison.

Table 17.Quantitative Security Risk evaluation of

openMRS

System Requirement Risk 350.26

Product Design Risk

Static Analysis 100

Dynamic Analysis Risk 33.53

Table 18.Quantitative Security Risk evaluation openEMR

System Requirement Risk 326

Product Design Risk

Static Analysis 100

Dynamic Analysis Risk 35.45

The scores of the individual dimensions were not aggregated

since they might end up being the same on aggregation.

Individual comparison of each dimension is suggested.

6. Results and Discussion
In order to evaluate the artifact, we needed to detect the

potential vulnerabilities in the candidate software product.

However, this was challenging for multiple reasons. Much

effort and skill is required for manual vulnerability detection.

Automated vulnerability testing is faster but suffers from

problems related to false positives and missed issues. The two

methods of automatic vulnerability detection are static

analysis and dynamic analysis. Static analysis is performed by

examining the source code or the binaries of the software.

Dynamic analysis is performed on the application when it is

running, using a vulnerability scanner. The challenge with

vulnerability testing is that neither of the methods is

comprehensive by itself, as pointed out by Austin et al. [13].

In addition, the output of different scanners produces different

results and often misses some vulnerability.

We selected the method of automated dynamic vulnerability

detection for our experiment. As per Austin et al., in case of

limited time, “automated penetration testing can be conducted

to discover penetration bugs.” Our assumption is that we will

use the same dynamic analysis tools on both candidate

products, causing similar results in both. However, we

recognize that usage of the tool and code-based characteristics

of candidate software products have an impact on the results

of the static analysis tool[42]. The goal of the research is to

evaluate relative security risk level of the products and not the

absolute security risk level. Since we have not found any

absolute solution so far for vulnerability detection, we

proceed with the automated vulnerability detection method.

However, we acknowledge that detection of vulnerability is

an issue as identified by [13, 43] and others.

 We examined the topic groups and found that they

presented the vulnerability domain very well, thereby

confirming the results presented by Neuhaus et al. [33]. We

encountered multiple challenges when implementing the

assessment model for software selection procedure. First, we

wanted to design the proposed procedure such that the

practitioners using the procedure must find it practical and not

overly time consuming. In an empirical study of how OSS is

selected in small companies, authors [44] find that OSS

selection procedure is sequential , with the „first fit‟ solution

being selected rather than „best-fit‟[44]. Thus we assume that

practitioners review multiple tools in a short duration of time,

leaving very little time for extensive security testing.

Therefore, we selected automatic penetration testing methods

for vulnerability detection since it is time-efficient for

detecting implementation flaws[13]. Second, finding a method

to effectively create a list(s) of vulnerabilities for a candidate

software system has been difficult due to issues reported in

prior research [13, 42, 45]. Manual testing depends on the

skills and knowledge of the tester, including the fact that it is

time consuming. Automated vulnerability detection has issues

due to limitations of the vulnerability analysis tools[42], a

high percentage of false positives, lack of coverage due to

inability to scan all pages, etc. We argue that some evaluation

is better than none. At least the software systems would not be

selected without any kind of security risk evaluation. Finally,

we were faced with the issue of matching the results of

different scanners with the quantitative security risk

assessment model. The results of static analysis as well as

dynamic analysis were in different textual formats. The

documentation of different vulnerability scanners contains a

long list of individual security problems detected by the

scanners. It might have been better to manually map these

problem categories to topics, rather than doing this with text

mining and matching the topics. In addition, since one scanner

and one methodology will not find all vulnerabilities, we

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

54

propose the use of multiple tools for scanning and thus had

multiple lists. This added the complexity of converting the

text output of the security scanners to a format that could be

used to infer the topic and then obtaining the impact score and

frequency for that topic.

We began by investigating 3 questions:

RQ1: What are the essential dimensions for evaluating a

candidate software product before selection?

The security risk level of a potential software product can be

evaluated by considering two dimensions: System

Requirement Dimension and Product Design dimensions.

Each of these has sub dimensions and steps as described in

Section 5.3.1. Following „System Thinking,‟ we evaluate the

product, its environment and its host.

RQ2: Can we use a quantitative security risk assessment

model to compare and select between custom software

products?

We can build a quantitative security risk assessment model

using empirical data about vulnerabilities from NVD, as

demonstrated in prior research and in Section 5.3.2 of this

paper. We used topic modeling to determine groups of threats,

their likelihood and impact score.

RQ3: How do we analyze the security risk level of a potential

software product?

We analyze the security risk level of a potential software

product using our defined dimensions and steps similar to

800:53 IT risk assessment [46]. This has been described in

Section 5.4 through an experiment.

7. Limitations
The topic clusters generated by machine might have overlap

between them. This has not been handled in this research. The

assessment model will only report on known vulnerabilities

since it is based on historical data. Most users might be more

worried about unknown vulnerabilities than known security

risks. However, known vulnerabilities still represent a

significant percentage of threats to a software system. Scholte

et al. conducted an empirical study of vulnerabilities for web-

based software systems and found that complexities of these

vulnerabilities are not increasing over time. Most of these

vulnerabilities are happening due to simple reasons, such as

lack of input validation [47]. In a study comparing the

effectiveness of different vulnerability scanners, authors Bau

et al. found that different scanners are strong in different

categories [48]. Also, they found that vulnerabilities detected

by scanners in popular categories such as SQL injection and

cross-site scripting is proportional to those found in the real

situation. They lack in finding second order vulnerabilities

such as “Cross-Channel Scripting, Cross-Site Request

Forgery, and Malware Presence” [48]. An area of future work

is to evaluate a better method for automatic labeling of the

topics.

8. CONCLUSION
The aim of this research is to propose an artifact to support the

evaluation of off-the-shelf software products before adoption

using a quantitative security risk assessment model. We

propose the application of the topic model to discover latent

groups of vulnerabilities and develop a risk model based on

those groups. This quantitative security risk model combined

with component, static, and dynamic analysis output serves to

evaluate multiple software products. We acknowledge the

limitation of vulnerability scanning tools and its impact on the

procedure. However, given the time constraints that

practitioners have to evaluate a software system and the lack

of better methods for objective analysis, we propose that our

model is a support for a quick and preliminary analysis which

can be further supplemented by more intensive analysis using

security experts, depending on the context and available time.

For future work, we propose investigating other topic

modeling algorithms and the possibility of applying automatic

labeling to the topic groups. We believe that the addition of

such features to the assessment model would assist in the

development of a user-friendly tool to assist the practitioners

in comparing multiple products. Topics have not been

manually or automatically labeled. Having topic clusters

labeled would provide the practitioners an enhanced accuracy

and more practical way to judge the score(s) and determine

their mitigation strategies.

9. Acknowledgement
The material is summarized from parts of the dissertation to

be submitted to The George Washington University in partial

fulfillment of the requirements for the Doctor of Philosophy

degree.

10. REFERENCES
[1] J. L. Bayuk, "Systems Security Engineering," Security &

Privacy, IEEE, vol. 9, pp. 72-74, 2011.

[2] INCOSE, "“INCOSE Systems Engineering Handbook,"

vol. 3.2.

[3] D. Childs, "Information technology security system

engineering methodology," in Aerospace Conference,

2003. Proceedings. 2003 IEEE, 2003, pp. 3393-3401.

[4] N. F. Schneidewind, "Methods for assessing COTS

reliability, maintainability, and availability," in Software

Maintenance, 1998. Proceedings. International

Conference on, 1998, pp. 224-225.

[5] R. Khan, "Secure software development: a prescriptive

framework," Computer Fraud & Security, vol. 2011,

pp. 12-20, 2011.

[6] I. Mkpong-Ruffin, D. Umphress, J. Hamilton, and J.

Gilbert, "Quantitative software security risk assessment

model," presented at the Proceedings of the 2007 ACM

workshop on Quality of protection, Alexandria, Virginia,

USA, 2007.

[7] J. A. Wang, M. Guo, H. Wang, M. Xia, and L. Zhou,

"Ontology-based security assessment for software

products," presented at the Proceedings of the 5th Annual

Workshop on Cyber Security and Information

Intelligence Research: Cyber Security and Information

Intelligence Challenges and Strategies, Oak Ridge,

Tennessee, 2009.

[8] S. H. Houmb, V. N. L. Franqueira, and E. A. Engum,

"Quantifying security risk level from CVSS estimates of

frequency and impact," Journal of Systems and Software,

vol. 83, pp. 1622-1634, 2010.

[9] W. Zhihu and W. Xin, "Research on technologies in

quantitative risk assessment and forcast of network

security," in Advanced Computer Theory and

Engineering (ICACTE), 2010 3rd International

Conference on, 2010, pp. V6-524-V6-528.

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

55

[10] H. Joh, "Quantitative analyses of software

vulnerabilities," Ph.D. 3489881, Colorado State

University, United States -- Colorado, 2011.

[11] Y. L. Chenmeng Sui, Yun Liu, "A Software Security

Assessment System Based On Analysis of

Vulnerabilities," Journal of Convergence Information

Technology, vol. 7, p. 211 ~ 219, 2012.

[12] S.-W. Woo, H. Joh, O. H. Alhazmi, and Y. K. Malaiya,

"Modeling vulnerability discovery process in Apache and

IIS HTTP servers," Computers & Security, vol. 30,

pp. 50-62, 2011.

[13] A. Austin and L. Williams, "One Technique is Not

Enough: A Comparison of Vulnerability Discovery

Techniques," in Empirical Software Engineering and

Measurement (ESEM), 2011 International Symposium

on, 2011, pp. 97-106.

[14] W. J. Sung, J. H. Kim, and S. Y. Rhew, "A Quality

Model for Open Source Software Selection," in

Advanced Language Processing and Web Information

Technology, 2007. ALPIT 2007. Sixth International

Conference on, 2007, pp. 515-519.

[15] MITRE. (6/24/2012). CWE -Common Weakness

Enumeration. Available:

http://cwe.mitre.org/compatible/category.html

[16] "Probabilistic Topic Models," Communications of the

ACM, vol. 55, pp. 77-84, 2012.

[17] G. Anthes, "Topic Models Vs. Unstructured Data,"

Communications of the ACM, vol. 53, pp. 16-18, 2010.

[18] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor,

"Software traceability with topic modeling," in Software

Engineering, 2010 ACM/IEEE 32nd International

Conference on, 2010, pp. 95-104.

[19] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P.

Baldi, "Mining concepts from code with probabilistic

topic models," presented at the Proceedings of the

twenty-second IEEE/ACM international conference on

Automated software engineering, Atlanta, Georgia, USA,

2007.

[20] C. Kuan-Yu, C. Hsuan-Sheng, and B. Chen, "Latent

topic modeling of word vicinity information for speech

recognition," in Acoustics Speech and Signal Processing

(ICASSP), 2010 IEEE International Conference on,

2010, pp. 5394-5397.

[21] R. A. Negoescu and D. Gatica-Perez, "Modeling Flickr

Communities Through Probabilistic Topic-Based

Analysis," Multimedia, IEEE Transactions on, vol. 12,

pp. 399-416, 2010.

[22] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein,

"Validating the Use of Topic Models for Software

Evolution," in Source Code Analysis and Manipulation

(SCAM), 2010 10th IEEE Working Conference on,

2010, pp. 55-64.

[23] C. Xin, H. Xiaohua, S. Xiajiong, and G. Rosen,

"Probabilistic topic modeling for genomic data

interpretation," in Bioinformatics and Biomedicine

(BIBM), 2010 IEEE International Conference on, 2010,

pp. 149-152.

[24] D. Magatti, S. Calegari, D. Ciucci, and F. Stella,

"Automatic Labeling of Topics," in Intelligent Systems

Design and Applications, 2009. ISDA '09. Ninth

International Conference on, 2009, pp. 1227-1232.

[25] A. Hindle, N. A. Ernst, M. W. Godfrey, and J.

Mylopoulos, "Automated topic naming to support cross-

project analysis of software maintenance activities,"

presented at the Proceedings of the 8th Working

Conference on Mining Software Repositories, Waikiki,

Honolulu, HI, USA, 2011.

[26] A. R. Hevner, S. T. March, J. Park, and S. Ram, "Design

science in information systems research," MIS Q., vol.

28, pp. 75-105, 2004.

[27] NVD. National vulnerability database. Available:

http://nvd.nist.gov

[28] A. Ozment, "Improving vulnerability discovery models,"

presented at the Proceedings of the 2007 ACM workshop

on Quality of protection, Alexandria, Virginia, USA,

2007.

[29] G. Schryen and R. Kadura, "Open source vs. closed

source software: towards measuring security," presented

at the Proceedings of the 2009 ACM symposium on

Applied Computing, Honolulu, Hawaii, 2009.

[30] C. Fruhwirth and T. Mannisto, "Improving CVSS-based

vulnerability prioritization and response with context

information," presented at the Proceedings of the 2009

3rd International Symposium on Empirical Software

Engineering and Measurement, 2009.

[31] Y. J. Chung, I. Kim, N. Lee, T. Lee, and H. P. In,

"Security risk vector for quantitative asset assessment,"

presented at the Proceedings of the 2005 international

conference on Computational Science and Its

Applications - Volume Part II, Singapore, 2005.

[32] W. Ju An, Z. Linfeng, G. Minzhe, W. Hao, and J.

Camargo, "Measuring Similarity for Security

Vulnerabilities," in System Sciences (HICSS), 2010 43rd

Hawaii International Conference on, 2010, pp. 1-10.

[33] S. Neuhaus and T. Zimmermann, "Security Trend

Analysis with CVE Topic Models," in Software

Reliability Engineering (ISSRE), 2010 IEEE 21st

International Symposium on, 2010, pp. 111-120.

[34] (06-01-2012). CVE -Common Vulnerabilities and

Exposures (CVE). Available: http://cve.mitre.org/

[35] J. A. Wang, H. Wang, M. Guo, and M. Xia, "Security

metrics for software systems," presented at the

Proceedings of the 47th Annual Southeast Regional

Conference, Clemson, South Carolina, 2009.

[36] N. Mendes, J. Duraes, and H. Madeira, "Benchmarking

the Security of Web Serving Systems Based on Known

Vulnerabilities," in Dependable Computing (LADC),

2011 5th Latin-American Symposium on, 2011, pp. 55-

64.

[37] K. Peffers, T. Tuunanen, M. Rothenberger, and S.

Chatterjee, "A Design Science Research Methodology

for Information Systems Research," Journal of

Management Information Systems, vol. 24, pp. 45-77,

2008.

[38] J. V. Juhani Iivari "Action Research and Design Science

Research – Seemingly similar but decisively dissimilar,"

17th European Conference on Information Systems,

2009.

IJCA Special Issue on “Computational Intelligence & Information Security" CIIS 2012

56

[39] K. E. N. Peffers, T. Tuunanen, M. A. Rothenberger, and

S. Chatterjee, "A Design Science Research Methodology

for Information Systems Research," Journal of

Management Information Systems, vol. 24, pp. 45-77,

Winter2007/2008 2007.

[40] Stanford Topic Modeling Toolbox. Available:

http://nlp.stanford.edu/software/tmt/tmt-0.4/

[41] (05/05/2012). Google Code. Available:

http://code.google.com/p/skipfish/

[42] (05/05/2012). Software [In]security: Comparing Apples,

Oranges, and Aardvarks (or, All Static Analysis Tools

Are Not Created Equal) | As the Market Grows |

InformIT. Available:

http://www.informit.com/articles/article.aspx?p=168086

3

[43] A. Doupe, M. Cova, and G. Vigna, "Why Johnny can't

pentest: an analysis of black-box web vulnerability

scanners," presented at the Proceedings of the 7th

international conference on Detection of intrusions and

malware, and vulnerability assessment, Bonn, Germany,

2010.

[44] O. Hauge, T. Osterlie, C.-F. Sorensen, and M. Gerea,

"An empirical study on selection of Open Source

Software - Preliminary results," presented at the

Proceedings of the 2009 ICSE Workshop on Emerging

Trends in Free/Libre/Open Source Software Research

and Development, 2009.

[45] L. Suto, "Title," unpublished|.

[46] A. G. Gary Stoneburner, and Alexis Feringa. (2002,

5/5/2012). Risk Management Guide for Information

Technology Systems. NIST-SP 800:30.

[47] T. Scholte, D. Balzarotti, and E. Kirda, "Have things

changed now? An empirical study on input validation

vulnerabilities in web applications," Computers &

Security, vol. 31, pp. 344-356, 2012.

[48] B. Jason, "State of the Art: Automated Black-Box Web

Application Vulnerability Testing," 2010, pp. 332-345.

