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ABSTRACT 

Multiple software products often exist on the same server and 

therefore vulnerability in one product might compromise the 

entire system. It is imperative to perform a security risk 

assessment during the selection of the candidate software 

products that become part of a larger system. Having a 

quantitative security risk assessment model provides an 

objective criterion for such assessment and comparison 

between candidate software systems. In this paper, we present 

a software product evaluation method using such a 

quantitative security risk assessment model. This method 

utilizes prior research in quantitative security risk assessment, 

which is based on empirical data from the National 

Vulnerability Database (NVD), and compares the security risk 

levels of the products evaluated.  We introduced topic 

modeling to build a security risk assessment model. The risk 

model is created using Latent Dirichlet Allocation (LDA) to 

classify the vulnerabilities into topics, which are then used as 

the measurement instruments to evaluate the candidate 

software product. Such a procedure could supplement the 

existing selection process, to assist the decision makers to 

evaluate open-source software (OSS) systems, to ensure that it 

is safe and secure enough to be put into their environment. 

Finally, the procedure is demonstrated using an experimental 

case study.     

General Terms 

Risk Management, Measurement, Security. 

Keywords 

Software Security, quantitative risk assessment, Software 

evaluation, Topic Modeling, LDA. 

1. INTRODUCTION 
The system engineering approach to selecting a secure system 

ensures that the system selected meets the mission of the 

organization and the security level needed by the missions [1]. 

For example, a system selected to hold patient data must be 

secure enough to protect patient data and provide necessary 

controls to prevent unauthorized access.  As per International 

Council on Systems Engineering (INCOSE), system 

engineering is “an interdisciplinary approach and means to 

enable the realization of successful systems” [2]. For a system 

to be successful, a security risk assessment of the software 

product that will eventually become part of a larger system is 

important. In a software system developed in-house,  there is 

an opportunity to make it secure by taking proactive measures 

during the entire development life cycle.  In many cases, the 

security assessment is conducted in the development or 

verification and validation (V&V) phase through vulnerability 

scanning [3], secure code review, threat modeling, etc. 

However, when an off-the-shelf or open source software 

product is evaluated, the system engineers have no control 

over design and build phase. In this case, a security risk 

assessment becomes even more essential and must be 

conducted upfront during the initial evaluation. As pointed out 

by Schneidewind, an insecure COTS or OSS product may be 

a weak link in the system environment [4] and impact the 

reliability of the entire system. In addition to black box testing 

and operation testing, impact on other systems in the 

environment must be tested using fault injection testing on the 

candidate OSS product. Recent research has presented a 

framework to ensure that security is actively considered 

during the software development life cycle [5]. However, for 

an OSS, such an opportunity is not available. Therefore it is 

more critical that security be evaluated before implementing 

the OSS in an operational setting. 

Security flaws in a software product increase the security risk 

to the whole environment in which it operates. When 

evaluating an open or closed source off-the-shelf software 

system for use, the software security assessment must be 

conducted to ensure that the product has a relatively low 

security risk. The term „software product‟ in this paper refers 

to a web-based database-driven application. When comparing 

multiple candidate software products, an objective measure is 

needed for such evaluation. The quantitative security risk 

assessment is gaining momentum in research for decision-

making, risk assessment and resource allocation [6-12]. Prior 

studies in quantitative software security risk assessment have 

mainly focused on: browsers, application servers, database 

servers, individually or on entire network topology.  A new 

study is needed to identify how we can apply or extend such a 

model and metrics to compare and select software products 

such as web-based applications. 

This study introduces a procedure to select from a multitude 

of OSS products and is based on a quantitative security risk 

assessment.  The relevance of the research can be observed in 

a case study performed by Austin et al., which evaluated 

multiple open source electronic health record systems. The 

researchers detected approximately 1321 issues through static 

analysis and 710 through dynamic analysis[13]. Security 

assessment during OSS selection has been proposed in prior 

works[14]. However, skilled security professionals are rarely 

used during the initial selection process of a software system. 

Most security assessments are performed after the system has 

been implemented. The framework discussed below can be 

utilized by practitioners to augment the existing security 
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assessment process during the early stages of software product 

evaluation. 

Our approach investigates the application of topic models for 

creating the quantitative security risk assessment model. The 

reason for choosing the approach of having  the machine 

generate a list of topics is that not all vulnerabilities have been 

categorized in NVD using CWE (Common Weakness 

Enumeration) groups[15]. As a result, it is difficult to 

determine the actual likelihood or frequency, and thereby, 

severity of a vulnerability group or threat. Finally, we selected 

the Design Science Research Methodology (DSRM) to 

perform this study. This research methodology selection is 

based on our goal to propose an artifact to support the 

evaluation of off-the-shelf or OSS software products before 

adoption using the quantitative security risk assessment 

model. The activities in our research have been outlined 

below, adopting the steps mentioned by Peffers et al. for 

presenting the information derived through Design Science 

Research Methodology (DSRM) [37].  

The primary contributions of this paper are: 

1) Demonstration of usage of topic modeling for 

vulnerability grouping. 

2) Identification of dimension for security assessment 

of candidate software products  

3) Development of a method to enable practitioners to 

review candidate products objectively  

4) Outline of an experiment to perform the procedure 

 

The remainder of the paper is organized as follows: Section 2 

provides background information and definitions. Section 3 

outlines the prior work on which this research is based. 

Section 4 provides reasons for research methodology 

selection. Section 5 describes the research methodology.  

Section 6 presents results and discussion. Section 7 states 

limitations and Section 8 concludes the paper. 

2. BACKGROUND 
This section provides brief background information on the 

concepts used in this paper.  For example, the paper presents 

„Topic Modeling‟ as a method for clustering the data and 

„Design Science‟ as a research methodology. We describe 

these concepts in this section. 

2.1 Topic Modeling 
Topic Modeling is used to analyze large corpora of text, in 

order to categorize them into clusters identified by a set of 

terms or tags. The term topic modeling refers to the technique 

of identifying themes in an unstructured text [16]. It falls 

under the category of unsupervised machine learning and 

probabilistic modeling [17]. Latent Dirichlet allocation 

(LDA) algorithm, a type of topic modeling, considers the 

input text as a bag of words and uses Bayesian inference to 

learn the distribution for topic grouping. Due to its ease of 

use, it has found application in a number of areas. Asuncion et 

al. applied the topic modeling technique to solve the problem 

of software artifact traceability [18]. Linstead et al. applied 

the topic model to extract „concepts‟ or functional topics from 

the code[19].  In addition, a few of the other varied 

applications include potential for speech recognition[20], 

understanding social network ecosystems[21], investigating 

software evolution[22], analyzing genomic data[23], etc. The 

essence of the algorithm is its power to extract the semantic 

nature of the text.  However, the challenge is then to analyze 

the meaning of the latent topics that emerge. Different 

automatic labeling algorithms have been proposed to solve 

this issue [24, 25]. Hindle et al. performed automatic topic 

labeling by assigning labels to the topic groups generated by 

the LDA algorithm by matching with a predefined word list. 

These word lists were derived from the ontology for non-

functional requirements designed by prior research, and the 

ISO9126 list. This provided a methodology to perform 

domain specific labeling. There are some limitations to LDA. 

One of the limitations is the requirement that the number of 

topics must be predefined before running the algorithm.  If the 

number of topics is small then the topic clusters formed are 

too generic, while if they are large then terms overlap between 

the topic clusters. Another limitation is that interpretation of 

the topic cluster semantics is left to the user. 

2.2 Design Science Research Methodology 
Design Science Research Methodology (DSRM) is common 

in the field of information system. However, it is rarely found 

in system engineering. Design science is a problem-solving 

research paradigm and results in the creation of an artifact to 

solve the problem.  Hevner et al. proposed the design-science 

paradigm for information system (IS). IS being an applied 

science field, its research often contributes by creation of 

“new and innovative artifacts” [26]. The authors outlined the 

boundaries of DSRM by mentioning 2 processes and 4 

artifacts. The processes are “design and evaluate.” The 

artifacts are “constructs, models, methods, and instantiations” 

[26]. The primary purpose of artifacts created using DSRM is 

to “address unsolved problems”  and the value is based on the  

“utility provided in solving those problems” [26].   

2.3 National Vulnerability Database (NVD) 
The National Vulnerability Database [27] produced by NIST 

Computer Security Divisions contains publicly available 

vulnerability data.  Currently, there are over 44,000 Common 

Vulnerabilities and Exposures (CVE) entries in NVD.  NVD 

has been used in prior research for developing vulnerability 

detection/discovery models or VDM[28]. In another related 

study, NVD data has been utilized by Schryen et al.  to 

propose a software metrics named „Patch index‟[29]. They 

used NVD data to compare the security of the open source 

versus closed source software, by categorizing the 

vulnerability into three classes (high, low, and medium) and 

calculating the patch index based on number of patched 

versus un-patched vulnerabilities. NVD has also been used to 

build decision models that can be supplemented by user input, 

such as context information to allow for resource and effort 

management, through prioritization [30]. Fruhwirth et al. 

propose a security model where the temporal and 

environmental context information is provided by the 

practitioners, which allows for recalculation of the CVSS 

score and re-prioritization of the vulnerabilities. Chung et al. 

demonstrated a procedure for security risk assessment by 

cross-referencing the vector composed of the attributes “Data, 

Server and Application” with the vector “confidentiality, 

integrity, and availability”[31]. Another research used NVD 

data to propose a similarity based measurement that can be 

used for patching, mitigation and other security management 

areas [32]. In this research, An et al. utilized NVD along with 

Ontology for Vulnerability Management (OVM) to determine 

similarity between vulnerability using the hierarchical 

similarity algorithm. The characteristics considered for the 

similarity algorithm were “Type, Product, Access Vector, 

Access Complexity, Authentication, Confidentiality Impact, 

Integrate Impact and Availability Impact” [32]. 

NVD data contains information about different vulnerabilities 

in COTS, such as database servers, application servers, 
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browsers, etc. We integrate this information to determine the 

overall security composition of a custom software product and 

its potential implementation environment. 

3. RELATED WORK 
In a recent research, Neuhaus et al. used topic modeling to 

study the national vulnerabilities database (NVD) entries and 

identify emerging trends[33]. They found that classification 

done by the topic modeling technique LDA  mostly agreed 

with the categorization done by MITRE.  In this paper, we 

follow this approach to identify topic clusters from NVD 

entries. The rationale behind choosing an unsupervised 

learning problem such as LDA is that not all categories have 

been labeled as per CWE (Common Weakness Enumeration) 

category [15] in NVD. Using LDA, our goal is to discover 

groups of similar vulnerabilities within the data by clustering 

as found by Neuhaus et al. [33].  The benefit of using topic 

modeling for creating a risk assessment framework is it can be 

used to evaluate results from multiple different vulnerability 

scanners which produce textual output. Each scanner may 

have its own description of the vulnerabilities, which can be 

categorized into topics by using the topic modeling technique 

and assessed against the model created using the NVD entries. 

In a prior research, Wang et al. proposed an ontology-based 

security assessment of the software products [7].  The 

products evaluated in the paper as a case study were web 

browsers such as Mozilla Firefox 3 and Internet Explorer 7. 

The two key questions in the paper were: “1) given a software 

product, what is the trustworthiness of it? 2) Among the 

similar products, which one is the best product in terms of 

security?” The questions that we propose in this research are 

similar but the software products are different. The software 

products we plan to evaluate are custom web-based, database-

driven software applications. The security scores for these 

products are not likely to be present in NVD and need to be 

derived based on categories of vulnerability found. This 

research plans to fill this gap by proposing a framework for 

calculating the score of a custom database-driven software 

system. 

Mkpong-Ruffin et al. (2007) proposed a software security risk 

assessment model using k-means clustering algorithm to 

group the vulnerability, and then through CVSS scores 

calculated the loss expectancy for each group [1]. The average 

CVSS scores were then calculated using the average growth 

rate for each month for the selected cluster. Finally, using the 

growth rate along with the average CVSS score, the predicted 

impact value was calculated for each cluster. They validated 

this proposed framework by generating a list of vulnerabilities 

using Microsoft‟s Threat Analysis and Modeling Tool 

(TAMT) and comparing with their own model. Their 

procedure proposed predictions of loss expectancy during 

design time using modeling tool output and the risk model 

built by them. The goal of our research is also to build such a 

quantitative security risk model; we plan to use the topic 

modeling technique instead of k-means clustering. 

The procedure used in this research is similar to that used by 

Houmb et al.[3] The procedure was evaluated using a case 

study to demonstrate the security risk level assessment of a 

network.  The procedure followed was: ”Step 1: Identify 

vulnerabilities and potential fault introduction sources. Step 2: 

Estimate frequency and impact of vulnerabilities using CVSS. 

Step 3: Derive risk level from frequency and impact 

estimates” [8].  Our research uses a similar procedure but 

applies to a software product. 

In a related research by Sui et al., the authors developed a 

framework for software security metrics score calculation 

based on quantitative criteria for integrality, availability and 

confidentiality [11].  They used the vulnerability scanner 

Nessus to generate a list of vulnerabilities and compare 

against their custom quantitative scoring criteria to calculate a 

security score. In our research, we also plan to use a 

vulnerability scanner, except we plan to use the impact score 

and threat likelihood value derived from NVD data to 

generate the security score.  

Table 1 provides a brief overview of prior work on which we 

have based our paper. 

 

Table 1. Prior Research in Quantitative Software Security Risk Assessment 

 [1] [2] [3] [4] [5] 

Name  SSRAM (Software 

Security Risk 

Assessment Model 

Security Metrics for 

Software System 

Risk Level using 

CVSS estimates of 

frequency and 

impact 

SSAS (Software 

Security Assessment 

System) 

VEXA : Software 

Vulnerability 

Extractor and 

Analyzer 

Data Source NVD NVD NVD NVD OSVDB and NVD 

Technique K means Clustering Custom Calculation 

based on CVSS 

BASE SCORE and 

Number of 

Months(Frequency) 

Bayesian Belief 

Network (BBN) 

topology 

Custom Calculation 

based on CVSS and 

VRSS 

Sum the impact and 

exploitability score. 

Apply weights 

based on the 

relevance of 

components 

Application  In Design Phase Security metrics 

score calculation for 

products such as: 

IE6 , Mozilla etc 

Operation Operation Comparing 

Components(server, 

OS,  database etc) 

for web serving 

systems 

Evaluation Case study Experiment Case study Experiment Case Study 

Quantitative 

metrics 

Predicted Loss 

Expectancy 

Predicted Impact 

Score Predicted 

Base Impact, 

And Frequency 

Frequency and 

impact score 

Base Impact, 

Exploitability 

Exploitability 

and impact level 

from CVSS 
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 [1] [2] [3] [4] [5] 

Frequency of 

Occurrence 

Tools used TAMT, SQL Server 

Integration services, 

MS Analysis studio 

None Hugins, Nessus, Nessus None 

Artifact Produced Model Equations Method, Equations, Methods, Equations, 

Tool 

VEXA tool 

 

4. Methodology Rationale 
In this section we provide a rationale for the selection of 

Design Science Research Methodology (DSRM). The 

framework for our research has been shown in Figure 1. 

4.1 Overview  
Our research is carried out using guidelines provided by 

Hevner et al. [26] and presented using the steps proposed by 

Peffers et al. [37] for this methodology. Design Science (DS) 

research methodology is common in the field of information 

system. Hevner et al. categorized artifacts created through DS 

methodology into constructs, models, methods and 

instantiation. Table 2 provides examples of each of these 

artifact categories. 

 

 

 

Table 2: Artifacts for Design Science Research [6] 

Artifacts Example 

Constructs vocabulary and symbols 

Models abstractions and representations 

Methods algorithms and practices 

Instantiations implemented and prototype systems 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Design Science Research Process adapted from [7] 

 

4.2 Rationale for DSRM 
Design science research is very similar to action research 

since both attempt to identify and solve a problem. However, 

there are important differences between the two. Action 

research is a change-oriented approach that incorporates close 

collaboration between researcher and practitioners [38]. 

Design science research does not assume such collaboration.  

In design science research methodology (DSRM), the 

researcher identifies the issue, develops the theory and finally 

produces an artifact using the theory to solve the problem. 

Unlike DSRM, the initiator of the study in action research is 

often the practitioners. Our research is based on solving a 

problem by forming a procedure. The practitioners are not 

involved and therefore, DSRM is an appropriate methodology 

to follow. 

As noted by Peffers et al., “Design Science is of importance in 

a discipline oriented to the creation of successful artifacts” 

[39]. The primary purpose of artifacts created using design 

science is to “address unsolved problems”  and the value is 

based on the “utility provided in solving those problems” [26]. 

Since the goal of our research is to create a method to select 

between multiple software products based on quantitative 

software security risk assessment, DSRM is an ideal 

methodology to follow. Finally, design science is a problem-

solving paradigm and thus supports our goal of solving the 

issue of selecting secure OSS products.   

5. DSRM Steps 

5.1 Problem Identification and Rationale 
Recently several quantitative security risk assessment models 

have been proposed, many of which use vulnerability data 

from public databases such as NVD, OSVBD, etc. Even 

though vulnerability data has been used for predicting 

exploits, managing patching, and evaluating network security 

risks, it has rarely been applied to software selection. Since 

vulnerability is a type of defect that reduces the reliability of 

the system, filling this gap would help in the evaluation and 

selection of custom or open source software systems.   

Existing quantitative software security risk models fall short 

since they evaluate individual COTS product and topology 

made of COTS, like servers, databases, etc. Some of them 

have clustered the vulnerability and applied it to the software 

design process[6]. However, in our review, we have not found 

any instrument providing objective measurement to help with 
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assessment of candidate software products such as web-based 

application. 

The rationale for this research is to provide an artifact that can 

assist practitioners in making informed decisions based on 

empirical data and objective value. The primary research 

questions (RQ) evaluated were: 

RQ1: What are the essential dimensions for evaluating a 

candidate software product before selection? 

RQ2: How do we analyze the security risk level of a potential 

software product? 

RQ3: Can we use a quantitative security risk assessment 

model to compare and select between custom software 

products?   

5.2 Objective of the Solution 
The objective of the solution is to provide a method using the 

quantitative security risk assessment model based on prior 

research and to demonstrate its use as an instrument that can 

provide quantitative value for objective decision making in 

software selection. 

5.3 Design and Development 
The proposed method consists of the following steps: 

1) Collect NVD data and cluster using topic modeling 

methods  

2) Obtain the categories of vulnerability that the 

vulnerability scanner tool can report 

3) Label the topics found in step 1, using the categories 

from the vulnerability scanner. This results in the 

quantitative security risk assessment model 

4) Inspect and find system requirements for the 

candidate software product. Identify the operating 

system, database servers, web servers and other 

components needed, their brand and version 

5) Determine the security score of the system 

requirement components 

6) Next for each product (assuming OSS product), 

download the code and perform static analysis. Use 

the quantitative security risk assessment model to 

determine impact score and frequency 

7) Next install the OSS and perform dynamic analysis 

using web application scanner. Use the quantitative 

security risk assessment model to determine impact 

score and frequency 

8) Repeat this for all candidate products and compare 

the results.  

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Model for OSS selection using Quantitative Security 

Risk Analysis 

Figure 2 shows the design of the model for OSS selection 

using quantitative security risk analysis.  To design the 

artifacts, we first investigated the sources of security risk of a 

software product. A software product has security risk due to 

the code base, the COTS product (servers, OS, etc.) it is 

hosted on and the environment it is installed on. Thus, we 

propose two primary dimensions for evaluating the security 

risk of the candidate software product: System Requirement 

Risk and Product Design Risk, as shown in Figure 3. 

5.3.1 Dimensions of Risk  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1.1 System Requirement Risk 
A software product comes with system requirements, which 

specify the operating system, database server and web server 

on which it can operate. These are sources of risk and can be 

further subdivided into: 

Host Risk: This is the first sub-dimension and is related to the 

COTS product on which it is hosted. These are operating 

systems (OS), web servers and database servers. Each of them 

is a source of security risk based on the number of 

vulnerabilities that reside within.  

 

Environment Risk: The next risk sub-dimension is due to the 

environment in which the software product might be installed. 

A public facing server is more risky than one installed within 

the firewall and closed to public access. 

 

Protection Level Risk: The final risk sub-dimension is a 

subjective score that the practitioners can assign based on 

knowledge about the protection controls that exists in terms of 

people, software and process on the host. 

5.3.1.2 Product Design Risk 
The second dimension of risk is due to the flaws in the 

software caused by programming errors such as integer 

overflow or buffer overflow. These can be detected using 

static and dynamic analysis to identify a list of potential 

vulnerabilities. 

 

 

Fig 3.  Risk assessment dimensions for the candidate 

product 
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The next section describes the quantitative security risk 

assessment model development process.  

5.3.2 Development 
Next, we obtain the empirical data to develop the quantitative 

security risk model. The development process consists of 2 

primary tasks: data collection and model building. To build 

the model, we grouped the vulnerabilities into clusters using 

Topic Modeling and then estimated the impact using the 

average base score, and severity using the number of 

vulnerabilities in each cluster. 

5.3.2.1 Data Collection 
The empirical data for building the risk model was obtained 

from the National Vulnerability Database (NVD). The data is 

available as a XML file named nvdcve-2.0-[year].xml, where 

the year indicates a number from 2002 to 2012. We built a 

perl script to extract the cve_id, published date, score and 

summary field and loaded it to a database server. In addition, 

a CSV file was created with one line per CVE entry.  We refer 

to this file as the extracted NVD file in the rest of this paper. 

5.3.2.2 Topic Modeling 
We applied the Latent Dirichlet allocation (LDA) technique to 

the extracted NVD file using Stanford Topic Modeling 

Toolbox[37]. Known as a type of unsupervised machine 

learning technique, LDA considers the input text as a bag of 

words and uses Bayesian inference to learn the distribution for 

topic grouping. To build the LDA model, we applied a simple 

English tokenizer and removed English stop words like „the,‟ 

„of,‟ etc. We considered a summary text with 2 or more terms. 

We filtered out terms that appear in less than 4 topics.   

One of the parameters essential for LDA is “number of 

topics.” We ignored non-words and non-numbers. We ran the 

LDA model using the CVB0 algorithm, looping over the 

number of topics ranging from 10 to 100 and calculating the 

perplexity score. The model was trained using 80% of the data 

and tested using 20% of the data. Finally, we chose 40 as the 

number of topics since it gave the least amount of overlap and 

least amount of generic topics. Figure 4 shows the graph 

demonstrating the choice of optimum topics number.  

 

 

Fig 4. Topic Selection Evaluation 

 

The output of this process resulted in multiple files of which 

we used only two. The first file contained the topic groups and 

associated terms as shown in Table 3.  The second file 

contained indicators showing association between the CVE 

entry and the associated topic distribution.  

Table 3. Topics and Top 10 Related Terms Output From 

LDA toolbox 

Topic Terms 

Topic 

24 

string, function, arbitrary, execute, allows, attackers, 

format, remote, commands, shell, vulnerability, 

code, metacharacters, properly, handled, command, 

variable, argument, program, functions, earlier, 

demonstrated, specifiers, using, cgi, context-

dependent,  variables,  query, php, certain, strings, 

arguments, allow, line, option, expression, used, 

perl, regular, possibly 

Topic 

26 

server, web, remote, attackers, allows, http, request, 

url, apache, source, redirect, determine, iis, 

manager, requests, sites, page, application, open, 

uri, default, proxy, network, node, tomcat, jsp, mail, 

interfacepages, administration, sap, scripts, 

coldfusion, existence, error, contains 

Topic 

23 

script, scripting, web, xss, cross-site, html, inject, 

arbitrary, attackers, remote, vulnerability, allows, 

parameter, earlier, index.php, search, page, action, 

parameters, cms, query, search.php, uri, error, title, 

_info, msg, path, portal, different, insert, login, 

theme, keyword 

 

 

The extracted NVD file and the output from the LDA toolbox 

are then loaded into the database server for calculation of 

estimated score and the frequency of the topic group. We used 

SQL Server Express for data storage and manipulation. The 

extracted NVD file is loaded into a table with attributes 

cve_id, published date, score and summary. The output from 

the LDA toolbox is also loaded into the database server. This 

data is parsed so that we have a table showing the relationship 

between CVE_ID, Topic Name and Associated Probability 

Distributions. Since there are many topics per CVE, we need 

to determine the most relevant topic. For each CVE, we select 

the topic with the highest probability distribution. This gives 

us a vector consisting of CVE_ID, Topic Name, Score and 

maximum probability distribution as shown in Table 5. 

Table 5: Vulnerability and Topic with maximum 

probability distribution  

cve_id Topic 

Name 

Score Max Probability 

CVE-2008-2012 Topic 

02 

7.5 0.8308502 

CVE-2012-0005 Topic 

28 

6.9 0.8247771 

CVE-2012-0011 Topic 

08 

9.3 0.8780806 

CVE-2012-0018 Topic 

08 

9.3 0.9353617 

CVE-2012-0019 Topic 

08 

9.3 0.9687625 

CVE-2012-0020 Topic 

08 

9.3 0.9687625 

CVE-2012-0056 Topic 

19 

6.9 0.8364574 

CVE-2012-0069 Topic 

02 

7.5 0.9886265 

CVE-2012-0072 Topic 

27 

5 0.9918746 
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5.3.2.3 Labeling the topics 
The LDA toolbox generated the topics and the associated 

terms but their interpretation remained to be done.  A number 

of algorithms has been presented in order to interpret the topic 

clusters. Hindle et. al [25] generated the word list with 

category names, using different sources and then labeled the 

topic if any of the words from the word list categories 

matched the topic terms. 

We attempted to assign labels using 2 methods. In the first 

method, for each topic cluster, we counted the number of 

CVE per CWE. We labeled a topic cluster with a CWE name 

if it had a maximum number of CVEs of that type.  In the 

second method, we obtained the categories from our 

vulnerability scanner and applied the same topic model 

created earlier using NVD topic to assign them to topic 

groups. For each vulnerability scanner category, we found the 

topic that represented the highest probability distribution. 

Table 4 is a sample of the results for this method, for topics 

shown in Table 3. Both attempts were not very accurate and 

needed manual intervention. In both cases, manual review was 

needed to fix a certain percentage of the topics.   

 

Table 4. Mapping of Topic to Skipfish Vulnerability 

Topic Skipfish Reported Vulnerability 

Topic 24 Format string vulnerabilities. 

Topic 26 Explicit SQL-like syntax in GET or POST 

parameters. 

Topic 23 Stored and reflected XSS vectors in document 

body (minimal JS XSS support present). 

 

5.4 Demonstration and Evaluation  
To evaluate the measurement tool, we selected open source 

software openEMR[12] and openMRS[13] as candidate 

software products. We selected open source products 

belonging to same function domain. Both of them are open 

source health record systems. openEMR is developed in PHP 

with MySQL as the backend. openMRS is developed in java 

with MySQL as backend. Both run on a MySQL database 

server. We setup the systems in our test environment: one on 

Apache Http server and the other on Apache Tomcat server, 

as specified by their respective system requirement 

documentation. The candidate systems were scanned for 

vulnerabilities using the open source web application scanner 

skipfish[41]. The host operating system for both the software 

products was Windows 7. 

 

5.4.1 System Requirements Risk Analysis 
 

The steps in the process are as follows: 

Step 1: Inspect system requirements and identify major COTS 

components such as database server, web server, etc. 

1. For openMRS, we identify the following system 

requirements to host the product: Apache Tomact 6 

and MySQL 6 

 

2. Find base score; exploit score and the number of 

vulnerabilities for each component 

. 

An example for the component MySQL is given in Table 6. 

Table 6: Sample component base score, exploit score and 

the number vulnerabilities 

CVE ID Base score Exploit score 

CVE-2004-0388 2.1 3.9 

CVE-2004-0627 10 10 

CVE-2004-0628 10 10 

CVE-2005-1636 4.6 3.9 

CVE-2005-2558 4.6 3.9 

CVE-2005-2572 8.5 6.8 

CVE-2005-2573 5 10 

CVE-2006-0369 2.1 3.9 

CVE-2006-0903 4.6 3.9 

 

1. Calculate the component security score as follows 

using the impact score formula proposed by Sui et 

al.[4] 

 

Component Security Risk Score

=
 𝐵𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒 𝑋 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 𝑆𝑐𝑜𝑟𝑒𝑛
𝑖=1

𝑛
                                (1) 

 

Where n = number of vulnerabilities in the component   

 

In addition we need to consider the exposure score. An OSS 

product installed on a public facing server is more vulnerable 

than on a private server.  Therefore, we assign a weight to 

each based on exposure. 

Finally, we need to consider the protection level of the 

environment where it will be installed. We provided three 

values for practitioners to select from based on their 

professional judgment. 

 

Total System Requirement Security Risk score = Component 

Score * Exposure Weight * Protection Level 

 

Table 7. openMRS System Requirements Risk Score 

Host 

Compo

nents 

Security 

Risk  Score 

Exposu

re 

Weight 

Protectio

n level 

 

Apache 

Tomcat 

6 

C1 =41.63 External 

E1=2 

Low 

P1=3 C1*E1*P1

= 249.8 

MySQL 

6 

C2=33.81 Internal 

E2=1 

High 

P2=1 

C2*E2*P2

= 33.81 

Apache 

Windo

ws 2008 

C3=13.33 External 

E3=2 

Medium 

P3=2 C3*E3*P3

= 53.32 

Tomcat 

Windo

ws 2008 

C4=13.33 Internal 

E4=1 

High 

P4=1 C3*E3*P3

= 13.33 

Total System Requirement Security Risk score 
350.26 
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Table  8. openEMR System Requirements Risk Score 

Host Component 

Score 

Exposure 

Weight 

Protection 

level 

 

Apache 2.2 37.59 External=2 Low=3 225.54 

 

MySQL 6 33.81 Internal=1 High=1 33.81 

Apache 

Windows 7 

13.33 External=2 Medium=2 

53.32 

Tomcat 

Windows 7 

13.33 Internal=1 High=1 

13.33 

Total Component Security Risk score 326.00 

 

Practitioners can also perform an if-then analysis by changing 

the operating system type, exposure score and protection 

level.  

5.4.2 Product Design Risk Analysis 
To find the security risk due to coding flaws, we conducted 

static and dynamic analysis. 

5.4.2.1 Dynamic Analysis 
We conducted dynamic analysis using a web application 

scanner for the candidate products. Below is a list of 

representative vulnerabilities found by dynamic analysis of 

openMRS using SkipFish[41]. 

Table 9. openMRS Dynamic Analysis 

Name of the Representative 

Threat 

Number of 

Vulnerabilities Found in 

Candidate 1 (openMRS) 

Integer overflow vector  4 

Incorrect or missing charset  7 

Incorrect or missing MIME type 1 

HTML form with no apparent 

XSRF protection  

2 

 

We found that some of these had direct mapping to CWE but 

others did not, for example, integer overflow maps to CWE-

190 whose parent is CWE-189 - Numeric Errors. Certain 

vulnerabilities in NVD have been mapped to CWE-189 - 

Numeric Errors, thus enabling us in extracting average impact 

score and frequency score value. Others such as „Incorrect or 

missing charset‟ had no mapping in CWE used by NVD. 

However, using the previously trained topic model, we were 

able to assign a topic to each of the skipfish vulnerability 

types. 

Table 10. Assignment of a topic to each of the skipfish 

vulnerability types 

Name of the Representative Threat Topic  

Integer overflow vector  Topic 37 

Incorrect or missing charset  Topic 01 

Incorrect or missing MIME type Topic 00 

HTML form with no apparent XSRF protection  Topic 01 

 

Next we applied the method outlined by Wang et al. [35] to 

find the security metric score. 

Count the number of vulnerabilities per topic and the 

frequency as shown in Tables 11 and 12. 

Table 11. Topic vulnerability count and date range 

Topic Vulnerability 

Count 

Min Date  Max date 

Topic 01 1153 2/14/1998 5/24/2012 

Topic 30 720 11/11/1988 5/24/2012 

Topic 02 5083 11/1/1995 5/23/2012 

 

Table 12. Topic vulnerability count and Frequency 

Topic 

Name 

Vulnerability 

Count 

V 

Number of 

Months 

Min Date-

Max Date 

M 

Frequency 

Per 

Month 

V/M 

Topic 00 604 187 3 

Topic 01 1153 171 6 

Topic 37 1393 152 9 

 

Average Impact Score for each Topic Cluster is calculated as: 

Average Score  =   𝑏𝑎𝑠𝑒 𝑆𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖=1

 

Where n=number of vulnerability in the Topic. 

 

Table 13. openMRS Topic Average score and Frequency 

Topic 

Name 

Average 

Score 

Frequency 

Per Month 

Topic 00 5.812582 F1=3 

Topic 01 5.763399 F2=6 

Topic 37 7.635104 F3=9 

 

Weight in Table 14 is the Number of Vulnerability Found in 

Candidate 1 for each topic. 

 

Table 14:  openMRS vulnerability weight analysis 

Topic 

Name 

Average  

Impact Score S 

Probability 

P  

Weight 

(W) 

Topic 00 S1=5.81 P1=F1/F1+F2+F3=0.17 W1=1 

Topic 01 S2=5.76 P2=F2/F1+F2+F3=0.33 W2=9 

Topic 37 S3=7.64 P3=F3/F1+F2+F3=0.5 W3=4 

 

Product Design Risk Score= S1*P1*W1 + S2*P2*W2 

+ S2*P2*W2 = 33.53 
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5.4.2.2 openEMR 
Next, we evaluate the second candidate software product. This 

product has a different system requirement risk score since it 

is installed on a different web server. The Table 15 shows a 

sample out obtained through dynamic scanning of openEMR. 

Table 15: Sample openEMR Dynamic Analysis 

Name of the Representative 

Threat 

Number of 

Vulnerabilities Found in 

Candidate 1 (openEMR) 

Integer overflow vector  4 

Incorrect or missing charset  8 

Incorrect or missing MIME type 1 

HTML form with no apparent 

XSRF protection  

2 

 

In the case of openEMR, for product design risk analysis, the 

types of vulnerability categories reported in our experiment 

remained the same. Thus, only the number of vulnerabilities 

(weight w) reported was different. 

  

Table 16. openEMR vulnerability weight analysis 

Topic 

Name 

Average Score 

S 

Probability 

P 

Weight 

(W) 

Topic 00 S1=5.812582 P1=0.166667 W1=1 

Topic 01 S2=5.763399 P2=0.333333 W2=10 

Topic 37 S3=7.635104 P3=0.5 W3=4 

 

Security Metric Score= S1*P1*W1 + S2*P2*W2 

+ S2*P2*W2 = 35.45 
 

Finally at the end of the procedure, we have the following 

security scores for the two candidate products for comparison. 

 

Table 17.Quantitative Security Risk evaluation of 

openMRS 

System Requirement Risk 350.26 

Product Design Risk 

Static Analysis 100 

Dynamic Analysis Risk 33.53 

 

 

Table 18.Quantitative Security Risk evaluation openEMR 

System Requirement Risk 326 

Product Design Risk 

Static Analysis 100 

Dynamic Analysis Risk 35.45 

 

The scores of the individual dimensions were not aggregated 

since they might end up being the same on aggregation. 

Individual comparison of each dimension is suggested.   

6. Results and Discussion 
In order to evaluate the artifact, we needed to detect the 

potential vulnerabilities in the candidate software product. 

However, this was challenging for multiple reasons. Much 

effort and skill is required for manual vulnerability detection. 

Automated vulnerability testing is faster but suffers from 

problems related to false positives and missed issues. The two 

methods of automatic vulnerability detection are static 

analysis and dynamic analysis. Static analysis is performed by 

examining the source code or the binaries of the software. 

Dynamic analysis is performed on the application when it is 

running, using a vulnerability scanner. The challenge with 

vulnerability testing is that neither of the methods is 

comprehensive by itself, as pointed out by Austin et al. [13]. 

In addition, the output of different scanners produces different 

results and often misses some vulnerability.  

We selected the method of automated dynamic vulnerability 

detection for our experiment. As per Austin et al., in case of 

limited time, “automated penetration testing can be conducted 

to discover penetration bugs.”  Our assumption is that we will 

use the same dynamic analysis tools on both candidate 

products, causing similar results in both. However, we 

recognize that usage of the tool and code-based characteristics 

of candidate software products have an impact on the results 

of the static analysis tool[42]. The goal of the research is to 

evaluate relative security risk level of the products and not the 

absolute security risk level. Since we have not found any 

absolute solution so far for vulnerability detection, we 

proceed with the automated vulnerability detection method. 

However, we acknowledge that detection of vulnerability is 

an issue as identified by [13, 43] and others. 

 We examined the topic groups and found that they 

presented the vulnerability domain very well, thereby 

confirming the results presented by Neuhaus et al. [33]. We 

encountered multiple challenges when implementing the 

assessment model for software selection procedure.  First, we 

wanted to design the proposed procedure such that the 

practitioners using the procedure must find it practical and not 

overly time consuming. In an empirical study of how OSS is 

selected in small companies, authors [44] find that OSS 

selection procedure is sequential , with the „first fit‟ solution 

being selected rather than „best-fit‟[44]. Thus we assume that 

practitioners review multiple tools in a short duration of time, 

leaving very little time for extensive security testing.  

Therefore, we selected automatic penetration testing methods 

for vulnerability detection since it is time-efficient for 

detecting implementation flaws[13]. Second, finding a method 

to effectively create a list(s) of vulnerabilities for a candidate 

software system has been difficult due to issues reported in 

prior research [13, 42, 45]. Manual testing depends on the 

skills and knowledge of the tester, including the fact that it is 

time consuming. Automated vulnerability detection has issues 

due to limitations of the vulnerability analysis tools[42], a 

high percentage of false positives, lack of coverage due to 

inability to scan all pages, etc. We argue that some evaluation 

is better than none. At least the software systems would not be 

selected without any kind of security risk evaluation. Finally, 

we were faced with the issue of matching the results of 

different scanners with the quantitative security risk 

assessment model. The results of static analysis as well as 

dynamic analysis were in different textual formats. The 

documentation of different vulnerability scanners contains a 

long list of individual security problems detected by the 

scanners. It might have been better to manually map these 

problem categories to topics, rather than doing this with text 

mining and matching the topics. In addition, since one scanner 

and one methodology will not find all vulnerabilities, we 
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propose the use of multiple tools for scanning and thus had 

multiple lists. This added the complexity of converting the 

text output of the security scanners to a format that could be 

used to infer the topic and then obtaining the impact score and 

frequency for that topic. 

We began by investigating 3 questions: 

RQ1: What are the essential dimensions for evaluating a 

candidate software product before selection? 

The security risk level of a potential software product can be 

evaluated by considering two dimensions: System 

Requirement Dimension and Product Design dimensions. 

Each of these has sub dimensions and steps as described in 

Section 5.3.1. Following „System Thinking,‟ we evaluate the 

product, its environment and its host. 

RQ2: Can we use a quantitative security risk assessment 

model to compare and select between custom software 

products?  

We can build a quantitative security risk assessment model 

using empirical data about vulnerabilities from NVD, as 

demonstrated in prior research and in Section 5.3.2 of this 

paper. We used topic modeling to determine groups of threats, 

their likelihood and impact score.  

RQ3: How do we analyze the security risk level of a potential 

software product? 

We analyze the security risk level of a potential software 

product using our defined dimensions and steps similar to 

800:53 IT risk assessment [46]. This has been described in 

Section 5.4 through an experiment. 

7. Limitations 
The topic clusters generated by machine might have overlap 

between them. This has not been handled in this research. The 

assessment model will only report on known vulnerabilities 

since it is based on historical data. Most users might be more 

worried about unknown vulnerabilities than known security 

risks. However, known vulnerabilities still represent a 

significant percentage of threats to a software system. Scholte 

et al. conducted an empirical study of vulnerabilities for web-

based software systems and found that complexities of these 

vulnerabilities are not increasing over time. Most of these 

vulnerabilities are happening due to simple reasons, such as 

lack of input validation [47]. In a study comparing the 

effectiveness of different vulnerability scanners, authors Bau 

et al. found that different scanners are strong in different 

categories [48]. Also, they found that vulnerabilities detected 

by scanners in popular categories such as SQL injection and 

cross-site scripting is proportional to those found in the real 

situation. They lack in finding second order vulnerabilities 

such as “Cross-Channel Scripting, Cross-Site Request 

Forgery, and Malware Presence” [48]. An area of future work 

is to evaluate a better method for automatic labeling of the 

topics. 

8. CONCLUSION 
The aim of this research is to propose an artifact to support the 

evaluation of off-the-shelf software products before adoption 

using a quantitative security risk assessment model. We 

propose the application of the topic model to discover latent 

groups of vulnerabilities and develop a risk model based on 

those groups. This quantitative security risk model combined 

with component, static, and dynamic analysis output serves to 

evaluate multiple software products. We acknowledge the 

limitation of vulnerability scanning tools and its impact on the 

procedure. However, given the time constraints that 

practitioners have to evaluate a software system and the lack 

of better methods for objective analysis, we propose that our 

model is a support for a quick and preliminary analysis which 

can be further supplemented by more intensive analysis using 

security experts, depending on the context and available time. 

For future work, we propose investigating other topic 

modeling algorithms and the possibility of applying automatic 

labeling to the topic groups. We believe that the addition of 

such features to the assessment model would assist in the 

development of a user-friendly tool to assist the practitioners 

in comparing multiple products. Topics have not been 

manually or automatically labeled. Having topic clusters 

labeled would provide the practitioners an enhanced accuracy 

and more practical way to judge the score(s) and determine 

their mitigation strategies. 
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