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ABSTRACT 

Association rule mining is a subfield of Data mining. It is a 

popular and widely used method to extract interesting and 

useful patterns from large sets of data. The first Rule Mining 

Algorithm was formulated by R. Agrawal in 1993. After the 

Apriori Algorithm formulated by R. Agrawal, many other 

algorithms have been proposed. Each of these algorithms has 

its own advantages and disadvantages over the others. The 

major issues of concern are the cost efficiency in terms of 

memory utilization, interestingness of the rules generated, 

influence of the minimum support level specified on the rules 

generated, the ability to discover relationships not only 

quantitatively but also qualitatively and the processing 

efficiency of the algorithm. This paper provides a comparative 

analysis on the classical Apriori algorithm along with some 

other association rule mining algorithms.   
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1. INTRODUCTION 
Association rule mining, one of the most important and well 

researched techniques of data mining, was first introduced in 

[1][2]. It aims to extract interesting correlations, frequent 

patterns, associations or casual structures among sets of items 

in the transaction databases or other data repositories. Rule 

mining techniques were initially applied for the popular 

market basket analysis but now find applications in the areas 

of bioinformatics, geoinformatics, intrusion detection, web 

usage mining, etc. 

1.1 Association Rule Description 
An association rule can be explained as follows: Let 

 be a set of  different items, 

, be the transaction database (DB) 

consisting of  transactions, where each transaction 

, is a set of  elements from . Thus 

. An association rule is then specified as  where 

 and . All such rules have two 

attribute associated with them, i.e. support and confidence. 

Let  be the percentage of transactions in DB which contain 

 then  is known as the support of . Let  be the 

percentage of transactions in DB containing  which also 

contain  then the rule  holds with confidence . Any 

statement of the form  is a rule if and only if the 

support of  and  is greater than or equal to a user specified 

threshold value known as minimum support as well as the 

ratio of support support  is greater than or 

equal to user specified minimum confidence. Given any rule, 

,  is known as antecedent and  is known as 

consequent. 

1.1.1 Support (s)  
Support(s) of an association rule is defined as the 

percentage/fraction of records that contain X  Y to the total 

number of records in the database. The count for each item is 

increased by one every time the item is encountered in 

different transaction T in database D during the scanning 

process. It means the support count does not take the quantity 

of the item into account. For example in a transaction a 

customer buys three bottles of beers but we only increase the 

support count number of  beers by one, in another word if a 

transaction contains a item then the support count of this item 

is increased by one. Support(s) is calculated by the following 

formula:  

Support(X,Y)=  

We can see, support of an item is a statistical significance of 

an association rule. Suppose the support of an item is 0.1%, it 

means only 0.1 percent of the transaction contain purchasing 

of this item. The retailer will not pay much attention to such 

kind of items that are not bought so frequently obviously a 

high support is desired for more interesting association rules. 

Before the mining process, users can specify the minimum 

support as a threshold, which means they are only interested 

in certain association rules that are generated from those 

itemsets whose supports exceed that threshold. However, 

sometimes even the itemsets are not as frequent as defined by 

the threshold, the association rules generated from them are 

still important.  

1.1.2 Confidence  
Confidence of an association rule is defined as the 

percentage/fraction of the number of transactions that contain 

X  Y to the total number of records that contain X, where if 

the percentage exceeds the threshold of confidence an 

interesting association rule X→Y can be generated. 

 

Confidence is a measure of strength of the association rules, 

suppose the confidence of the association rule X→Y is 80%, 

it means that 80% of the transactions that contain X also 

contain Y together, similarly to ensure the interestingness of 

the rules specified minimum confidence is also pre-defined by 

users. 

The current research trend focuses on developing efficient 

algorithms for generating the set of all frequent itemsets. The 

following section contains some popular association rule 

mining approaches. 
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2. ASSOCIATION RULE MINING 

APPROACHES 
Association rule mining is a well explored research area. In 

this section some basic and classic approaches for association 

rule mining will be explored. As stated before, the second 

subproblem of ARM is straightforward; most of those 

approaches focus on the first subproblem. The first 

subproblem can be further divided into two subproblems: 

candidate large itemsets generation process and frequent 

itemsets generation process [3]. We call those itemsets whose 

support exceed the support threshold as large or frequent 

itemsets, those itemsets that are expected or have the hope to 

be large or frequent are called candidate itemsets. Most of the 

algorithms of mining association rules we surveyed are quite 

similar, the difference is the extent to which certain 

improvements have been made, so only some of the 

milestones of association rule mining algorithms are 

introduced in the following section. 

2.1 AIS Algorithm 
The AIS (Agrawal, Imielinski, Swami) algorithm was the first 

algorithm proposed for mining association rule in [Agrawal 

et. al. 1993]. It focuses on improving the quality of databases 

together with necessary functionality to process decision 

support queries. In this algorithm only one item consequent 

association rules are generated, which means that the 

consequent of those rules only contain one item, for example 

we only generate rules like  but not those rules 

as . The databases were scanned many times to 

get the frequent itemsets in AIS. During the first pass over the 

database, the support count of each individual item was 

accumulated as shown in Table I (b), suppose the minimal 

support threshold is 30%, large one items were generated in 

Table I(c). According to minimal support those items whose 

support counts are less than 3 (I4 and I6) are eliminated from 

the list of frequent items. With those frequent 1 items, 

candidate 2 -itemsets are generated by extending those 

frequent items with other items in the same transaction. To 

avoid generating the same itemsets repeatedly the items were 

ordered, candidate itemsets are generated by joining the large 

items in previous pass and another item in the transaction, 

which appears later than the last item in the frequent itemsets. 

For example, based on transaction T100 I1, I2, I5, according to 

this specific order we generate candidate 2 -itemsets by 

extending I1 with only I2, I5, similarly I2 is extended with I5. 

The result is shown in Table I (d). During the second pass 

over the database, the support count of those candidate 2-

itemsets are accumulated and checked against the support 

threshold. Similarly those candidate (k+1)-itemsets are 

generated by extending frequent k-itemsets with items in the 

same transaction. All those candidate itemsets generation and 

frequent itemsets generation process iterate until any one of 

them becomes empty. The result frequent itemsets includes 

only one large 3-itemsets {I1, I2, I5}. To make this algorithm 

more efficient, an estimation method was introduced to prune 

those itemsets candidates that have no hope to be large, 

consequently the unnecessary effort of counting those 

itemsets can be avoided. Since all the candidate itemsets and 

frequent itemsets are assumed to be stored in the main 

memory, memory management is also proposed for AIS when 

memory is not enough. One approach is to delete candidate 

itemsets that have never been extended. Another approach is 

to delete candidate itemsets that have maximal number of 

items and their siblings, and store this, the parent itemsets in 

the disk as a seed for the next pass. The detail examples are 

available in [Agrawal et al. 1993]. The main drawback of the 

AIS algorithm is too many candidate itemsets that finally 

turned out to be small are generated, which requires more 

space and wastes much effort that turned out to be useless. At 

the same time this algorithm requires too many passes over 

the whole database. 

Table 1 Example of AIS Algorithm 

 

 

b) C1      c) L1 

 
a) Original Dataset 

 

 

     d) C2  e) L2  f) C3 

2.2 Apriori Algorithm   
Apriori is a great improvement in the history of association 

rule mining, Apriori algorithm was first proposed by Agrawal 

in [Agrawal and Srikant 1994]. The AIS is just a 

straightforward approach that requires many passes over the 

database, generating many candidate itemsets and storing 

counters of each candidate while most of them turn out to be 

not frequent. Apriori is more efficient during the candidate 

generation process for two reasons; Apriori employs a 

different candidate generation method and a new pruning 

technique. 

There are two processes to find out all the large itemsets from 

the database in Apriori algorithm. First the candidate itemsets 

are generated, and then the database is scanned to check the 

actual support count of the corresponding itemsets. During the 

first scanning of the database the support count of each item is 

calculated and the large 1 -itemsets are generated by pruning 

those itemsets whose supports are below the pre-defined 

threshold as shown in Table II(a) and (b). In each pass only 

those candidate itemsets that include the same specified 

number of items are generated and checked. The candidate k-

itemsets are generated after the (k-1)th passes over the 

database by joining the frequent k-1 -itemsets. All the 

candidate k-itemsets are pruned by check their sub (k-1)-

itemsets, if any of its sub (k-1)-itemsets is not in the list of 

frequent (k-1)-itemsets, this k-itemsets candidate is pruned out 

because it has no hope to be frequent according the Apriori 

property. The Apriori property says that every sub (k-1)-

itemsets of the frequent k-itemsets must be frequent. Let us 

TID List of 

items 

T100 

T200 

T300 

T400 

T500 

T600 

T700 

T800 

T900 

T000 

I1,I2,I5 

I2,I4 

I2,I3 

I1,I2,I4 

I1,I3 

I2,I3 

I1,I3 

I1,I2,I3,I5 

I1,I2,I3 

I1,I2,I5,I6 

Large 

1 

Items 

I1 

I2 

I3 

I5 

Items Count 

Numbe

r 

I1 

I2 

I3 

I4 

I5 

I6 

7 

8 

6 

2 

3 

1 

Items Count 

Number 

I1,I2 

I1,I5 

I2,I5 

I2,I4 

I2,I3 

I1,I4 

…. 

5 

3 

3 

2 

4 

1 

…. 

Items Count 

Number 

I1,I2,I5 

I1,I2,I4 

I1,I2,I3 

I1,I2,I6 

I2,I3,I5 

I1,I3,I5 

…. 
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1 

2 

1 

1 

1 

…. 

Large 

2 

items 

I1,I2 

I1,I5 

I2,I5 

I2,I3 

I1,I3 
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take the generation of candidate 3-itemsets as an example. 

First all the candidate itemsets are generated by joining 

frequent 2-itemsets, which include (I1, I2, I5), (I1, I2, I3), (I2, I3, 

I5), (I1, I3, I5). Those itemsets are then checked for their sub 

itemsets, since (I3, I5) is not frequent 2-itemsets, the last two 

3-itemsets are eliminated from the list of candidate 3-itemsets 

as shown in Table II(e). All those processes are executed 

iteratively to find all frequent itemsets until the candidate 

itemsets or the frequent itemsets become empty. The result is 

the same as the AIS algorithm.  

2.2.1 The Classical Apriori Algorithm 
The classical Apriori algorithm generates association rules 

in two steps: 

i. By scanning the database iteratively to find the 

support count of each -itemset 

where , such that 

. All those itemsets whose support count is greater 

than or equal to user specified minimum support is 

known as a frequent itemset. This phase is most 

resource consuming. 

ii. Generate association rules from the frequent itemsets. 

For every frequent itemset  if  , and 

support  support  minimum confidence, 

then . 

 

=  

=   

  

  

 all transaction   

   

 all candidates  

  

 

 

 
; 

 
The above stated algorithm can be explained as follows: 

At first all the frequent 1-itemsets are found by simply 

counting the support of each individual item in the transaction 

database. This set is denoted by L1. L1 is used to find L2, the 

set of all frequent 2-itemsets. This cycle continues until no 

more frequent k-itemsets are found. At this stage the first step 

of Apriori algorithm stops. During every Kth cycle a set of 

candidate K-itemsets, denoted by Ck is generated at first. Each 

itemset in Ck is generated by joining two frequent itemsets 

from Lk-1 which have only one different item. The itemsets in 

Ck are candidates for frequent K-itemset in Lk. Thus Lk is 

always a subset of Ck. The set Ck is pruned to retain those 

elements whose support count should be verified by scanning 

the DB. Pruning is an efficient method of removing all those 

elements of CK which can be declared a non frequent itemset 

without scanning the DB. Pruning removes all those itemsets 

of Ck whose any of the subset is not an element of Lk-1. This is 

done on the basis that if some superset is frequent then all its 

subset must be frequent as well. 

In the process of finding frequent itemsets, Apriori avoids the 

effort wastage of counting the candidate itemsets that are 

known to be infrequent. The candidates are generated by 

joining among the frequent itemsets level-wisely, also 

candidate are pruned according the Apriori property. As a 

result the number of remaining candidate itemsets ready for 

further support checking becomes much smaller, which 

dramatically reduces the computation, I/O cost and memory 

requirement. Table II shows the process of Apriori algorithm. 

By comparing Table I and Table II we can see the numbers of 

candidates changed dramatically. 

Apriori algorithm still inherits the drawback of scanning the 

whole data bases many times. Based on Apriori algorithm, 

many new algorithms were designed with some modifications 

or improvements. Generally there were two approaches: one 

is to reduce the number of passes over the whole database or 

replacing the whole database with only part of it based on the 

current frequent itemsets, another approach is to explore 

different kinds of pruning techniques to make the number of 

candidate itemsets much smaller. Apriori-TID and Apriori-

Hybrid [Agrawal and Srikant 1994] , DHP [Park et al. 1995], 

SON [Savesere et al. 1995] are modifications of the Apriori 

algorithm. 

Most of the algorithms mentioned above are based on the 

Apriori algorithm and try to improve the efficiency by making 

some modifications, such as reducing the number of passes 

over the database; reducing the size of the database to be 

scanned in every pass; pruning the candidates by different 

techniques and using sampling technique. However there are 

two bottlenecks of the Apriori algorithm. One is the complex 

candidate generation process that uses most of the time, space 

and memory. Another bottleneck is the multiple scan of the 

database. 

Table 2 Example of Apriori Mining Process 

 
 

2.2.2 FP-Tree (Frequent Pattern Tree) Algorithm 
To break the two bottlenecks of Apriori series algorithms, 

some works of association rule mining using tree structure 

have been designed. FP-Tree [Han et al. 2000], frequent 

pattern mining, is another milestone in the development of 

association rule mining, which breaks the two bottlenecks of 

the Apriori algorithm. The frequent itemsets are generated 

with only two passes over the database and without any 

candidate generation process. FP-Tree was introduced by Han 

et al in [4]. By avoiding the candidate generation process and 

less passes over the database, FP-Tree is an order of 

magnitude faster than the Apriori algorithm. The frequent 
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patterns generation process includes two sub processes: 

constructing the FP-Tree, and generating frequent patterns 

from the FP-Tree. 

The process of constructing the FP-Tree is as follows: 

 The database (Table I (a)) is scanned for the first time. 

During this scanning the support count of each items are 

collected. As a result the frequent 1 -itemsets are 

generated as shown in Table III(a), this process is the 

same as in Apriori algorithm. Those frequent itemsets are 

sorted in a descending order of their supports. Also the 

head table of ordered frequent 1 -itemsets is created as 

shown in Figure 1. 

 Create the root node of the FP-Tree T with a label of 

Root. The database is scanned again to construct the FP-

Tree with the head table, for each transaction the order of 

frequent items is resorted according to the head table. For 

example, the first transaction (I1, I2, I5) is transformed to 

(I2, I1, I5), since I2 occurs more frequently than I1 in the 

database. Let the items in the transaction be [p| P], where 

p is the first frequent item and P is the remaining items 

list, and call the function Insert {[p |P]; T}. 

The function Insert {[p | P]; T} works as follows. If T has a 

child N such that N.item-name=p.item-name then the count of 

N is increased by 1, else a new node N is created and N.item-

name=p.item-name with a support count of 1. Its parent link 

be linked to T and its node link is linked to the node with the 

same item-name via a sub-link. This function Insert {P;T} is 

called recursively until P becomes empty. 

 

Fig. 1 Result of FP-Tree 

Let's take the insertion of first transaction to the FP-Tree as an 

example to illustrate the insert function and construction of 

FP-Tree we mentioned above. After reorder this transaction is 

(I2, I1, I5), so p is I2 in this case, while P is (I1, I5). Then we call 

the function of insert, first we search and determine the node 

I2 exists in the tree or not, it turns out I2 is a new node. 

According to the rules, a new node named I2 is created with a 

support count of 1. Since here T is Root, node I2 is linked to 

Root and call the insert function again. At this time p is I1, P is 

I5, T is I2. The result of the FP-Tree of the database is shown 

in Figure 1. 

Table 3 Example of FP-Tree Algorithm 

 

 

 

 

 

 

 

 
 

a)   L1   b)   Transformed Data 

The frequent patterns are generated from the FP-Tree by the 

procedure named FP-growth [Han and Pei 2000]. Based on 

the head table and the FP-Tree, frequent patterns can be 

generated easily. It works as follows: 

 

Input: A transactional database DB and a minimum support 

threshold ξ. 

Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in the following steps: 

1. Scan the transaction database DB once. Collect 

the set of frequent items F and 

their supports. Sort F in support descending order as 

L, the list of frequent items. 

2. Create the root of an FP-tree, T, and label it as 

―root‖. For each transaction Trans 

in DB do the following. 

a. Select and sort the frequent items in 

Trans according to the order of L. Let the 

sorted frequent item list in Trans be [p | 

P], where p is the first element and P 

is the remaining list. Call insert_tree([p | 

P], T). 

b. The function insert_tree([p | P], T) is 

performed as follows. If T has a child N 

such that N.item-name = p.item-name, 

then increment N’s count by 1; else 

create a new node N, and let its count be 

1, its parent link be linked to T, and 

its node-link be linked to the nodes with 

the same item-name via the node-link 

structure. If P is nonempty, call 

insert_tree(P, N) recursively. 

 

The FP-growth algorithm for mining frequent patterns with 

FP-tree by pattern fragment growth is: 

 

Input: a FP-tree constructed with the above mentioned 

algorithm; 

D – transaction database; 

s – minimum support threshold. 

Output: The complete set of frequent patterns. 

Method: 

call FP-growth(FP-tree, null). 

Procedure FP-growth(Tree, A) 

{ 

if Tree contains a single path P 

then for each combination (denoted as B) of the 

nodes in the path P do 

generate pattern    with support=minimum 

support of nodes in B 

else for each ai in the header of the Tree do 

{ 

generate pattern B =  with support 

= ai.support; 

construct B’s conditional pattern base and 

B’s conditional FP-tree 

TreeB; 

if TreeB ≠ Ø 

then call FP-growth(TreeB, B) 

} 

} 

 

Large 

1 

Items 

Suppor

t 

I1 

I2 

I3 

I5 

7 

8 

6 

3 

TID Ordered 

Large Items 

T100 

T200 

T300 

T400 

T500 

T600 

 …… 

I2,I1,I5 

I2 

I2,I3 

I2,I1 

I1,I3 

I2,I3 

…… 
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3. ANALYSIS 
Recently FP-Growth algorithm has gained a lot of popularity 

and grabbed the focus of research. In the following section 

some limitations of FP-Growth is discussed to support the 

choice of Apriori over FP-Growth for this work. In [4], Han et 

al. introduce a quite novel algorithm to solve the frequent 

itemset mining problem. They adapt the idea of a trie to the 

set of transactions rather than candidates. In so doing, they 

effectively compress the dataset D with the hope that it will fit 

entirely in main memory. The data structure appears to 

eliminate the construction of candidates entirely. 

Experimental results have demonstrated consistently that it 

significantly outperforms A Priori. However, once the trie no 

longer fits in memory it suffers exactly the same 

consequences as in [5]. Even building the trie becomes 

extremely costly, to the point that in [6] it is remarked that the 

dominant percentage of execution time is that of constructing 

the trie. Consequently, on truly large datasets, the FPGrowth 

algorithm fails even to initialize.  

When first introduced, it was remarked that the algorithm 

scales quite elegantly. Indeed, if one has already constructed a 

trie, then the cost of mining it is roughly the same independent 

of the support threshold (except that the recursion produces 

more intermediate trees). However, one must be careful here. 

FPGrowth has a preprocessing step that prunes out all 

infrequent 1-itemsets prior to building the trie. Consequently, 

it does not scale as claimed because as the support threshold is 

lowered, the number of items pruned from the dataset 

decreases—and each of these newly unpruned items needs 

appear in the trie. So the trie needs to be reconstructed and it 

grows. How much it grows is dependent on the distribution of 

the dataset and the amount by which the support threshold is 

reduced. This growth can be several orders of magnitude for 

relatively small decreases in support threshold. 

Another general problem with the FPGrowth algorithm is 

that it lacks the incremental behavior of A Priori, something 

that builds fault tolerance into the algorithm. Should a 

machine running A Priori fail or shut down after producing, 

say, its frequent 5-itemsets, the algorithm can be easily 

restarted from that point by beginning with the construction of 

candidate 6-itemsets, rather than starting from the beginning. 

However, because FPGrowth operates by means of recursion, 

there are very few points at which the program can save state 

in anticipation of failure. 

3.1 Increasing the Efficiency of Association 

Rules Algorithms  
The computational cost of association rules mining can be 

reduced in many ways, e. g.:   

 By reducing the number of passes over the database  

 By sampling the database  

 By adding extra constraints on the structure of 

patterns   

 Through parallelization.  

In recent years much progress has been made in all these 

directions. Some of the related approaches towards the 

efficiency enhancement of Association Rule Mining 

algorithms are given below: 

3.2 GA based Association Rule Mining 
Different optimization methods for association rule mining 

have been proposed. The process is too resource-consuming, 

especially when there is not enough available physical 

memory for the whole database. A solution to encounter this 

problem is to use evolutionary algorithms, which reduce both 

cost and time of rule discovery. Genetic algorithm, colony 

algorithm, evolutionary algorithm and particle swarm 

algorithm are instances of single objective association rule 

mining algorithms. A few of these algorithms has been used 

for multi objectives. Yan proposed a method based on genetic 

algorithm without considering minimum support [7]. The 

method uses an extension of elaborate encoding while relative 

confidence is the fitness function. A public search is 

performed based on genetic algorithm. As the method does 

not use minimum support, a system automation procedure is 

used instead. It can be extended for quantitative-valued 

association rule mining. In order to improve algorithm's 

efficiency, it uses a generalized FP-tree. Evaluation of the 

algorithm shows a considerable reduction in computational 

cost. Just interesting rules with constant length are discovered. 

In this method, the genes contain rank of fields. Final 

chromosome should be the best one and the process stops if it 

reaches the predefined number of iterations or the result is not 

improved. The fitness function is defined such a way that it 

stays in local optimum and causes many rules to be generated. 

Kaya proposed genetic clustering method [8]. Hong proposed 

a cluster based method for mining generalized fuzzy 

association rules [9]. Chen proposed a cluster-based fuzzy-

genetic mining method for association rules and membership 

functions [10]. Dehuri et al proposed a rule mining method 

using multi objectives called multi objective genetic algorithm 

(MOGA) [11]. Later, they improved the performance by 

parallel association rule [12]. Gilan Atlas et al proposed a 

multi-objective differential evolution algorithm for mining 

numeric association rules. Later, they proposed another 

numeric association rule mining method using rough particle 

swarm algorithm which had some improvements in 

performance and precision compared to the previous one.  

3.3 Fuzzy Association Rule Mining 
Most work in fuzzy ARM is directed towards theoretical 

aspects of finding ways to discover better fuzzy association 

rules, both positive as well as negative ones. [13], [14], [15] 

discuss in detail about fuzzy implicators and t-norms for 

discovering fuzzy association rules, especially negative 

association rules, from datasets. [15], actually talks in depth 

about new measures of rule quality which would help the 

overall fuzzy ARM process. In fact, Hüllermeier et. al. [17], 

[18] make a very detailed analysis of t-norms and implicators 

with respect to fuzzy partitions, and provide a firm theoretical 

basis for their conclusions. [20], describes in great detail the 

general model and application of fuzzy association rules. 

Fuzzy Apriori, the de-facto algorithm used for fuzzy 

association rule mining, is used in [14], [15], [16], [19], [21]. 

Verlinde et al [16] describe in a fair amount of detail as to 

how fuzzy Apriori can be used to generate fuzzy association 

rules. Fuzzy Apriori, like Apriori, uses a record-by-record 

counting approach albeit the major difference being that it 

takes into account the fuzzy membership of an itemset in each 

record in order to calculate its overall count. [16], also very 

briefly describes a pre-processing technique, to obtain fuzzy 

attributes from numerical attributes, using FCM. Last, in [19] 

Hüllermeier and Yi justify the relevance of fuzzy logic being 

applied to association rule mining in today’s data-mining 

setup. 

Apart from these, much work is also done on trying to address 

the problem of scalability, mining rules qualitatively rather 

than quantitatively, and mining rules without specifying fixed 
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minimum support etc. But, since these areas of research are 

not within the scope of this work, so discussion on those 

works is omitted over here. 

4. CONCLUSION 
There are various algorithms for ARM. Almost all of them 

exploit the basic underlying concept of Apriori. Each of them 

has some merits and demerits over the other. Apriori however 

remains one of the most popular algorithms. In this paper 

different algorithms have been compared and the observations 

are stated in the analysis section of this paper. Though, 

Apriori has an aggressive search space pruning strategy, still 

the support count of candidate itemsets has a heuristic 

approach. In order to confirm whether an itemset of Ck after 

pruning is frequent or not its support is counted by scanning 

the entire transaction database. This is a heuristic approach. 

Such a heuristic approach is a necessity because of the 

representation of the transactions in the DB. Moreover this 

task has to be repeated for all the remaining itemsets of Ck 

after pruning during each Kth cycle. 
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