
Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

40

An Analysis on Association Rule Mining Techniques

Ish Nath Jha
Department of Computer Science & Engineering,

Sikkim Manipal Institute of Technology
Majitar, East Sikkim, India, PIN-737136

Samarjeet Borah
Department of Computer Science & Engineering,

Sikkim Manipal Institute of Technology
Majitar, East Sikkim, India, PIN-737136

ABSTRACT

Association rule mining is a subfield of Data mining. It is a

popular and widely used method to extract interesting and

useful patterns from large sets of data. The first Rule Mining

Algorithm was formulated by R. Agrawal in 1993. After the

Apriori Algorithm formulated by R. Agrawal, many other

algorithms have been proposed. Each of these algorithms has

its own advantages and disadvantages over the others. The

major issues of concern are the cost efficiency in terms of

memory utilization, interestingness of the rules generated,

influence of the minimum support level specified on the rules

generated, the ability to discover relationships not only

quantitatively but also qualitatively and the processing

efficiency of the algorithm. This paper provides a comparative

analysis on the classical Apriori algorithm along with some

other association rule mining algorithms.

Keywords

Association Rule Mining, Support, Confidence, Apriori, AIS,

FP-Tree

1. INTRODUCTION
Association rule mining, one of the most important and well

researched techniques of data mining, was first introduced in

[1][2]. It aims to extract interesting correlations, frequent

patterns, associations or casual structures among sets of items

in the transaction databases or other data repositories. Rule

mining techniques were initially applied for the popular

market basket analysis but now find applications in the areas

of bioinformatics, geoinformatics, intrusion detection, web

usage mining, etc.

1.1 Association Rule Description
An association rule can be explained as follows: Let

 be a set of different items,

, be the transaction database (DB)

consisting of transactions, where each transaction

, is a set of elements from . Thus

. An association rule is then specified as where

 and . All such rules have two

attribute associated with them, i.e. support and confidence.

Let be the percentage of transactions in DB which contain

 then is known as the support of . Let be the

percentage of transactions in DB containing which also

contain then the rule holds with confidence . Any

statement of the form is a rule if and only if the

support of and is greater than or equal to a user specified

threshold value known as minimum support as well as the

ratio of support support is greater than or

equal to user specified minimum confidence. Given any rule,

, is known as antecedent and is known as

consequent.

1.1.1 Support (s)
Support(s) of an association rule is defined as the

percentage/fraction of records that contain X Y to the total

number of records in the database. The count for each item is

increased by one every time the item is encountered in

different transaction T in database D during the scanning

process. It means the support count does not take the quantity

of the item into account. For example in a transaction a

customer buys three bottles of beers but we only increase the

support count number of beers by one, in another word if a

transaction contains a item then the support count of this item

is increased by one. Support(s) is calculated by the following

formula:

Support(X,Y)=

We can see, support of an item is a statistical significance of

an association rule. Suppose the support of an item is 0.1%, it

means only 0.1 percent of the transaction contain purchasing

of this item. The retailer will not pay much attention to such

kind of items that are not bought so frequently obviously a

high support is desired for more interesting association rules.

Before the mining process, users can specify the minimum

support as a threshold, which means they are only interested

in certain association rules that are generated from those

itemsets whose supports exceed that threshold. However,

sometimes even the itemsets are not as frequent as defined by

the threshold, the association rules generated from them are

still important.

1.1.2 Confidence
Confidence of an association rule is defined as the

percentage/fraction of the number of transactions that contain

X Y to the total number of records that contain X, where if

the percentage exceeds the threshold of confidence an

interesting association rule X→Y can be generated.

Confidence is a measure of strength of the association rules,

suppose the confidence of the association rule X→Y is 80%,

it means that 80% of the transactions that contain X also

contain Y together, similarly to ensure the interestingness of

the rules specified minimum confidence is also pre-defined by

users.

The current research trend focuses on developing efficient

algorithms for generating the set of all frequent itemsets. The

following section contains some popular association rule

mining approaches.

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

41

2. ASSOCIATION RULE MINING

APPROACHES
Association rule mining is a well explored research area. In

this section some basic and classic approaches for association

rule mining will be explored. As stated before, the second

subproblem of ARM is straightforward; most of those

approaches focus on the first subproblem. The first

subproblem can be further divided into two subproblems:

candidate large itemsets generation process and frequent

itemsets generation process [3]. We call those itemsets whose

support exceed the support threshold as large or frequent

itemsets, those itemsets that are expected or have the hope to

be large or frequent are called candidate itemsets. Most of the

algorithms of mining association rules we surveyed are quite

similar, the difference is the extent to which certain

improvements have been made, so only some of the

milestones of association rule mining algorithms are

introduced in the following section.

2.1 AIS Algorithm
The AIS (Agrawal, Imielinski, Swami) algorithm was the first

algorithm proposed for mining association rule in [Agrawal

et. al. 1993]. It focuses on improving the quality of databases

together with necessary functionality to process decision

support queries. In this algorithm only one item consequent

association rules are generated, which means that the

consequent of those rules only contain one item, for example

we only generate rules like but not those rules

as . The databases were scanned many times to

get the frequent itemsets in AIS. During the first pass over the

database, the support count of each individual item was

accumulated as shown in Table I (b), suppose the minimal

support threshold is 30%, large one items were generated in

Table I(c). According to minimal support those items whose

support counts are less than 3 (I4 and I6) are eliminated from

the list of frequent items. With those frequent 1 items,

candidate 2 -itemsets are generated by extending those

frequent items with other items in the same transaction. To

avoid generating the same itemsets repeatedly the items were

ordered, candidate itemsets are generated by joining the large

items in previous pass and another item in the transaction,

which appears later than the last item in the frequent itemsets.

For example, based on transaction T100 I1, I2, I5, according to

this specific order we generate candidate 2 -itemsets by

extending I1 with only I2, I5, similarly I2 is extended with I5.

The result is shown in Table I (d). During the second pass

over the database, the support count of those candidate 2-

itemsets are accumulated and checked against the support

threshold. Similarly those candidate (k+1)-itemsets are

generated by extending frequent k-itemsets with items in the

same transaction. All those candidate itemsets generation and

frequent itemsets generation process iterate until any one of

them becomes empty. The result frequent itemsets includes

only one large 3-itemsets {I1, I2, I5}. To make this algorithm

more efficient, an estimation method was introduced to prune

those itemsets candidates that have no hope to be large,

consequently the unnecessary effort of counting those

itemsets can be avoided. Since all the candidate itemsets and

frequent itemsets are assumed to be stored in the main

memory, memory management is also proposed for AIS when

memory is not enough. One approach is to delete candidate

itemsets that have never been extended. Another approach is

to delete candidate itemsets that have maximal number of

items and their siblings, and store this, the parent itemsets in

the disk as a seed for the next pass. The detail examples are

available in [Agrawal et al. 1993]. The main drawback of the

AIS algorithm is too many candidate itemsets that finally

turned out to be small are generated, which requires more

space and wastes much effort that turned out to be useless. At

the same time this algorithm requires too many passes over

the whole database.

Table 1 Example of AIS Algorithm

b) C1 c) L1

a) Original Dataset

 d) C2 e) L2 f) C3

2.2 Apriori Algorithm
Apriori is a great improvement in the history of association

rule mining, Apriori algorithm was first proposed by Agrawal

in [Agrawal and Srikant 1994]. The AIS is just a

straightforward approach that requires many passes over the

database, generating many candidate itemsets and storing

counters of each candidate while most of them turn out to be

not frequent. Apriori is more efficient during the candidate

generation process for two reasons; Apriori employs a

different candidate generation method and a new pruning

technique.

There are two processes to find out all the large itemsets from

the database in Apriori algorithm. First the candidate itemsets

are generated, and then the database is scanned to check the

actual support count of the corresponding itemsets. During the

first scanning of the database the support count of each item is

calculated and the large 1 -itemsets are generated by pruning

those itemsets whose supports are below the pre-defined

threshold as shown in Table II(a) and (b). In each pass only

those candidate itemsets that include the same specified

number of items are generated and checked. The candidate k-

itemsets are generated after the (k-1)th passes over the

database by joining the frequent k-1 -itemsets. All the

candidate k-itemsets are pruned by check their sub (k-1)-

itemsets, if any of its sub (k-1)-itemsets is not in the list of

frequent (k-1)-itemsets, this k-itemsets candidate is pruned out

because it has no hope to be frequent according the Apriori

property. The Apriori property says that every sub (k-1)-

itemsets of the frequent k-itemsets must be frequent. Let us

TID List of

items

T100

T200

T300

T400

T500

T600

T700

T800

T900

T000

I1,I2,I5

I2,I4

I2,I3

I1,I2,I4

I1,I3

I2,I3

I1,I3

I1,I2,I3,I5

I1,I2,I3

I1,I2,I5,I6

Large

1

Items

I1

I2

I3

I5

Items Count

Numbe

r

I1

I2

I3

I4

I5

I6

7

8

6

2

3

1

Items Count

Number

I1,I2

I1,I5

I2,I5

I2,I4

I2,I3

I1,I4

….

5

3

3

2

4

1

….

Items Count

Number

I1,I2,I5

I1,I2,I4

I1,I2,I3

I1,I2,I6

I2,I3,I5

I1,I3,I5

….

3

1

2

1

1

1

….

Large

2

items

I1,I2

I1,I5

I2,I5

I2,I3

I1,I3

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

42

take the generation of candidate 3-itemsets as an example.

First all the candidate itemsets are generated by joining

frequent 2-itemsets, which include (I1, I2, I5), (I1, I2, I3), (I2, I3,

I5), (I1, I3, I5). Those itemsets are then checked for their sub

itemsets, since (I3, I5) is not frequent 2-itemsets, the last two

3-itemsets are eliminated from the list of candidate 3-itemsets

as shown in Table II(e). All those processes are executed

iteratively to find all frequent itemsets until the candidate

itemsets or the frequent itemsets become empty. The result is

the same as the AIS algorithm.

2.2.1 The Classical Apriori Algorithm
The classical Apriori algorithm generates association rules

in two steps:

i. By scanning the database iteratively to find the

support count of each -itemset

where , such that

. All those itemsets whose support count is greater

than or equal to user specified minimum support is

known as a frequent itemset. This phase is most

resource consuming.

ii. Generate association rules from the frequent itemsets.

For every frequent itemset if , and

support support minimum confidence,

then .

=

=

 all transaction

 all candidates

;

The above stated algorithm can be explained as follows:

At first all the frequent 1-itemsets are found by simply

counting the support of each individual item in the transaction

database. This set is denoted by L1. L1 is used to find L2, the

set of all frequent 2-itemsets. This cycle continues until no

more frequent k-itemsets are found. At this stage the first step

of Apriori algorithm stops. During every Kth cycle a set of

candidate K-itemsets, denoted by Ck is generated at first. Each

itemset in Ck is generated by joining two frequent itemsets

from Lk-1 which have only one different item. The itemsets in

Ck are candidates for frequent K-itemset in Lk. Thus Lk is

always a subset of Ck. The set Ck is pruned to retain those

elements whose support count should be verified by scanning

the DB. Pruning is an efficient method of removing all those

elements of CK which can be declared a non frequent itemset

without scanning the DB. Pruning removes all those itemsets

of Ck whose any of the subset is not an element of Lk-1. This is

done on the basis that if some superset is frequent then all its

subset must be frequent as well.

In the process of finding frequent itemsets, Apriori avoids the

effort wastage of counting the candidate itemsets that are

known to be infrequent. The candidates are generated by

joining among the frequent itemsets level-wisely, also

candidate are pruned according the Apriori property. As a

result the number of remaining candidate itemsets ready for

further support checking becomes much smaller, which

dramatically reduces the computation, I/O cost and memory

requirement. Table II shows the process of Apriori algorithm.

By comparing Table I and Table II we can see the numbers of

candidates changed dramatically.

Apriori algorithm still inherits the drawback of scanning the

whole data bases many times. Based on Apriori algorithm,

many new algorithms were designed with some modifications

or improvements. Generally there were two approaches: one

is to reduce the number of passes over the whole database or

replacing the whole database with only part of it based on the

current frequent itemsets, another approach is to explore

different kinds of pruning techniques to make the number of

candidate itemsets much smaller. Apriori-TID and Apriori-

Hybrid [Agrawal and Srikant 1994] , DHP [Park et al. 1995],

SON [Savesere et al. 1995] are modifications of the Apriori

algorithm.

Most of the algorithms mentioned above are based on the

Apriori algorithm and try to improve the efficiency by making

some modifications, such as reducing the number of passes

over the database; reducing the size of the database to be

scanned in every pass; pruning the candidates by different

techniques and using sampling technique. However there are

two bottlenecks of the Apriori algorithm. One is the complex

candidate generation process that uses most of the time, space

and memory. Another bottleneck is the multiple scan of the

database.

Table 2 Example of Apriori Mining Process

2.2.2 FP-Tree (Frequent Pattern Tree) Algorithm
To break the two bottlenecks of Apriori series algorithms,

some works of association rule mining using tree structure

have been designed. FP-Tree [Han et al. 2000], frequent

pattern mining, is another milestone in the development of

association rule mining, which breaks the two bottlenecks of

the Apriori algorithm. The frequent itemsets are generated

with only two passes over the database and without any

candidate generation process. FP-Tree was introduced by Han

et al in [4]. By avoiding the candidate generation process and

less passes over the database, FP-Tree is an order of

magnitude faster than the Apriori algorithm. The frequent

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

43

patterns generation process includes two sub processes:

constructing the FP-Tree, and generating frequent patterns

from the FP-Tree.

The process of constructing the FP-Tree is as follows:

 The database (Table I (a)) is scanned for the first time.

During this scanning the support count of each items are

collected. As a result the frequent 1 -itemsets are

generated as shown in Table III(a), this process is the

same as in Apriori algorithm. Those frequent itemsets are

sorted in a descending order of their supports. Also the

head table of ordered frequent 1 -itemsets is created as

shown in Figure 1.

 Create the root node of the FP-Tree T with a label of

Root. The database is scanned again to construct the FP-

Tree with the head table, for each transaction the order of

frequent items is resorted according to the head table. For

example, the first transaction (I1, I2, I5) is transformed to

(I2, I1, I5), since I2 occurs more frequently than I1 in the

database. Let the items in the transaction be [p| P], where

p is the first frequent item and P is the remaining items

list, and call the function Insert {[p |P]; T}.

The function Insert {[p | P]; T} works as follows. If T has a

child N such that N.item-name=p.item-name then the count of

N is increased by 1, else a new node N is created and N.item-

name=p.item-name with a support count of 1. Its parent link

be linked to T and its node link is linked to the node with the

same item-name via a sub-link. This function Insert {P;T} is

called recursively until P becomes empty.

Fig. 1 Result of FP-Tree

Let's take the insertion of first transaction to the FP-Tree as an

example to illustrate the insert function and construction of

FP-Tree we mentioned above. After reorder this transaction is

(I2, I1, I5), so p is I2 in this case, while P is (I1, I5). Then we call

the function of insert, first we search and determine the node

I2 exists in the tree or not, it turns out I2 is a new node.

According to the rules, a new node named I2 is created with a

support count of 1. Since here T is Root, node I2 is linked to

Root and call the insert function again. At this time p is I1, P is

I5, T is I2. The result of the FP-Tree of the database is shown

in Figure 1.

Table 3 Example of FP-Tree Algorithm

a) L1 b) Transformed Data

The frequent patterns are generated from the FP-Tree by the

procedure named FP-growth [Han and Pei 2000]. Based on

the head table and the FP-Tree, frequent patterns can be

generated easily. It works as follows:

Input: A transactional database DB and a minimum support

threshold ξ.

Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following steps:

1. Scan the transaction database DB once. Collect

the set of frequent items F and

their supports. Sort F in support descending order as

L, the list of frequent items.

2. Create the root of an FP-tree, T, and label it as

―root‖. For each transaction Trans

in DB do the following.

a. Select and sort the frequent items in

Trans according to the order of L. Let the

sorted frequent item list in Trans be [p |

P], where p is the first element and P

is the remaining list. Call insert_tree([p |

P], T).

b. The function insert_tree([p | P], T) is

performed as follows. If T has a child N

such that N.item-name = p.item-name,

then increment N’s count by 1; else

create a new node N, and let its count be

1, its parent link be linked to T, and

its node-link be linked to the nodes with

the same item-name via the node-link

structure. If P is nonempty, call

insert_tree(P, N) recursively.

The FP-growth algorithm for mining frequent patterns with

FP-tree by pattern fragment growth is:

Input: a FP-tree constructed with the above mentioned

algorithm;

D – transaction database;

s – minimum support threshold.

Output: The complete set of frequent patterns.

Method:

call FP-growth(FP-tree, null).

Procedure FP-growth(Tree, A)

{

if Tree contains a single path P

then for each combination (denoted as B) of the

nodes in the path P do

generate pattern with support=minimum

support of nodes in B

else for each ai in the header of the Tree do

{

generate pattern B = with support

= ai.support;

construct B’s conditional pattern base and

B’s conditional FP-tree

TreeB;

if TreeB ≠ Ø

then call FP-growth(TreeB, B)

}

}

Large

1

Items

Suppor

t

I1

I2

I3

I5

7

8

6

3

TID Ordered

Large Items

T100

T200

T300

T400

T500

T600

 ……

I2,I1,I5

I2

I2,I3

I2,I1

I1,I3

I2,I3

……

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

44

3. ANALYSIS
Recently FP-Growth algorithm has gained a lot of popularity

and grabbed the focus of research. In the following section

some limitations of FP-Growth is discussed to support the

choice of Apriori over FP-Growth for this work. In [4], Han et

al. introduce a quite novel algorithm to solve the frequent

itemset mining problem. They adapt the idea of a trie to the

set of transactions rather than candidates. In so doing, they

effectively compress the dataset D with the hope that it will fit

entirely in main memory. The data structure appears to

eliminate the construction of candidates entirely.

Experimental results have demonstrated consistently that it

significantly outperforms A Priori. However, once the trie no

longer fits in memory it suffers exactly the same

consequences as in [5]. Even building the trie becomes

extremely costly, to the point that in [6] it is remarked that the

dominant percentage of execution time is that of constructing

the trie. Consequently, on truly large datasets, the FPGrowth

algorithm fails even to initialize.

When first introduced, it was remarked that the algorithm

scales quite elegantly. Indeed, if one has already constructed a

trie, then the cost of mining it is roughly the same independent

of the support threshold (except that the recursion produces

more intermediate trees). However, one must be careful here.

FPGrowth has a preprocessing step that prunes out all

infrequent 1-itemsets prior to building the trie. Consequently,

it does not scale as claimed because as the support threshold is

lowered, the number of items pruned from the dataset

decreases—and each of these newly unpruned items needs

appear in the trie. So the trie needs to be reconstructed and it

grows. How much it grows is dependent on the distribution of

the dataset and the amount by which the support threshold is

reduced. This growth can be several orders of magnitude for

relatively small decreases in support threshold.

Another general problem with the FPGrowth algorithm is

that it lacks the incremental behavior of A Priori, something

that builds fault tolerance into the algorithm. Should a

machine running A Priori fail or shut down after producing,

say, its frequent 5-itemsets, the algorithm can be easily

restarted from that point by beginning with the construction of

candidate 6-itemsets, rather than starting from the beginning.

However, because FPGrowth operates by means of recursion,

there are very few points at which the program can save state

in anticipation of failure.

3.1 Increasing the Efficiency of Association

Rules Algorithms
The computational cost of association rules mining can be

reduced in many ways, e. g.:

 By reducing the number of passes over the database

 By sampling the database

 By adding extra constraints on the structure of

patterns

 Through parallelization.

In recent years much progress has been made in all these

directions. Some of the related approaches towards the

efficiency enhancement of Association Rule Mining

algorithms are given below:

3.2 GA based Association Rule Mining
Different optimization methods for association rule mining

have been proposed. The process is too resource-consuming,

especially when there is not enough available physical

memory for the whole database. A solution to encounter this

problem is to use evolutionary algorithms, which reduce both

cost and time of rule discovery. Genetic algorithm, colony

algorithm, evolutionary algorithm and particle swarm

algorithm are instances of single objective association rule

mining algorithms. A few of these algorithms has been used

for multi objectives. Yan proposed a method based on genetic

algorithm without considering minimum support [7]. The

method uses an extension of elaborate encoding while relative

confidence is the fitness function. A public search is

performed based on genetic algorithm. As the method does

not use minimum support, a system automation procedure is

used instead. It can be extended for quantitative-valued

association rule mining. In order to improve algorithm's

efficiency, it uses a generalized FP-tree. Evaluation of the

algorithm shows a considerable reduction in computational

cost. Just interesting rules with constant length are discovered.

In this method, the genes contain rank of fields. Final

chromosome should be the best one and the process stops if it

reaches the predefined number of iterations or the result is not

improved. The fitness function is defined such a way that it

stays in local optimum and causes many rules to be generated.

Kaya proposed genetic clustering method [8]. Hong proposed

a cluster based method for mining generalized fuzzy

association rules [9]. Chen proposed a cluster-based fuzzy-

genetic mining method for association rules and membership

functions [10]. Dehuri et al proposed a rule mining method

using multi objectives called multi objective genetic algorithm

(MOGA) [11]. Later, they improved the performance by

parallel association rule [12]. Gilan Atlas et al proposed a

multi-objective differential evolution algorithm for mining

numeric association rules. Later, they proposed another

numeric association rule mining method using rough particle

swarm algorithm which had some improvements in

performance and precision compared to the previous one.

3.3 Fuzzy Association Rule Mining
Most work in fuzzy ARM is directed towards theoretical

aspects of finding ways to discover better fuzzy association

rules, both positive as well as negative ones. [13], [14], [15]

discuss in detail about fuzzy implicators and t-norms for

discovering fuzzy association rules, especially negative

association rules, from datasets. [15], actually talks in depth

about new measures of rule quality which would help the

overall fuzzy ARM process. In fact, Hüllermeier et. al. [17],

[18] make a very detailed analysis of t-norms and implicators

with respect to fuzzy partitions, and provide a firm theoretical

basis for their conclusions. [20], describes in great detail the

general model and application of fuzzy association rules.

Fuzzy Apriori, the de-facto algorithm used for fuzzy

association rule mining, is used in [14], [15], [16], [19], [21].

Verlinde et al [16] describe in a fair amount of detail as to

how fuzzy Apriori can be used to generate fuzzy association

rules. Fuzzy Apriori, like Apriori, uses a record-by-record

counting approach albeit the major difference being that it

takes into account the fuzzy membership of an itemset in each

record in order to calculate its overall count. [16], also very

briefly describes a pre-processing technique, to obtain fuzzy

attributes from numerical attributes, using FCM. Last, in [19]

Hüllermeier and Yi justify the relevance of fuzzy logic being

applied to association rule mining in today’s data-mining

setup.

Apart from these, much work is also done on trying to address

the problem of scalability, mining rules qualitatively rather

than quantitatively, and mining rules without specifying fixed

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

45

minimum support etc. But, since these areas of research are

not within the scope of this work, so discussion on those

works is omitted over here.

4. CONCLUSION
There are various algorithms for ARM. Almost all of them

exploit the basic underlying concept of Apriori. Each of them

has some merits and demerits over the other. Apriori however

remains one of the most popular algorithms. In this paper

different algorithms have been compared and the observations

are stated in the analysis section of this paper. Though,

Apriori has an aggressive search space pruning strategy, still

the support count of candidate itemsets has a heuristic

approach. In order to confirm whether an itemset of Ck after

pruning is frequent or not its support is counted by scanning

the entire transaction database. This is a heuristic approach.

Such a heuristic approach is a necessity because of the

representation of the transactions in the DB. Moreover this

task has to be repeated for all the remaining itemsets of Ck

after pruning during each Kth cycle.

5. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami, ―Mining

association rules between sets of items in large

databases,‖ in Proc. of the 1993 ACM SIGMOD

International Conference on Management of Data,

Washington, D.C., May 26-28, 1993. ACM Press, 1993,

pp. 207–216.

[2] R. Agrawal and R. Srikant, ―Fast algorithms for mining

association rules,‖ in Proc. of VLDB, 1994, pp. 487–499.

[3] N. Dexters, P. W. Purdom, and D. Van Gucht, ―A

probability analysis for candidate-based frequent itemset

algorithms,‖ in SAC ’06. New York, NY, USA: ACM,

2006, pp. 541–545.

[4] J. Han, J. Pei, and Y. Yin, ―Mining frequent patterns

without candidate generation,‖ in SIGMOD Conference.

ACM, 2000, pp. 1–12.

[5] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur,

―Dynamic itemset counting and implication rules for

market basket data,‖ SIGMOD Rec., Volume. 26, no. 2,

pp. 255–264, 1997.

[6] G. Buehrer, S. Parthasarathy, and A. Ghoting, ―Out-of-

core frequent pattern mining on a commodity pc,‖ in

KDD ’06: Proceedings of the 12th ACM SIGKDD

international confer- ence on Knowledge discovery and

data mining. New York, NY, USA: ACM, 2006, pp. 86–

95.

[7] X. Yan, ―Genetic algorithm-based strategy for

identifying association rules without specifying actual

minimum support‖, Expert Systems with Applications,

Volume 36, Issue 2, pp: 3066-3076 (2008).

[8] M. Kaya, R. Alhajj, ―Genetic algorithm based framework

for mining fuzzy association rules‖, Fuzzy Sets and

Systems 152:3, pp 587-601 (2005).

[9] B. C. Chien, Z. L. Lin and T. P. Hong, ―An efficient

clustering algorithm for mining fuzzy quantitative

association rules‖, The Ninth International Fuzzy

Systems Association World Congress, pp. 1306-1311

(2001).

[10] C.H. Chen, V.S. Tseng, T.P. Hong, ―Cluster-Based

Evaluation in Fuzzy-Genetic Data Mining‖, IEEE T.

Fuzzy Systems 16(1): 249-262 (2008).

[11] B. Goethals, ―Efficient frequent pattern mining,‖ Ph.D.

Dissertation, Transnationale Universiteit Limburg, 2002.

[12] Sean Chester, Ian Sandler, Alex Thomo: Scalable

AprioriBased Frequent Pattern Discovery. CSE (1) 2009:

48-55.

[13] De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy

Association Rules: A Two-Sided Approach. In: FIP, pp

385-390 (2003).

[14] Yan, P., Chen, G., Cornelis, C., De Cock, M., Kerre,

E.E.: Mining Positive and Negative Fuzzy Association

Rules. In: KES, pp. 270-276. Springer (2004).

[15] De Cock, M., Cornelis, C., Kerre, E.E.: Elicitation of

fuzzy association rules from positive and negative

examples. Fuzzy Sets and Systems, 149, 73–85 (2005).

[16] Verlinde, H., De Cock, M., Boute, R.: Fuzzy Versus

Quantitative Association Rules: A Fair Data-Driven

Comparison. IEEE Transactions on Systems, Man, and

Cybernetics - Part B: Cybernetics, 36, 679-683 (2006).

[17] Dubois, D., Hüllermeier, E., Prade, H.: A systematic

approach to the assessment of fuzzy association rules.

Data Min. Knowl. Discov., 13, 167-192 (2006).

[18] Dubois, D., Hüllermeier, E., Prade, H.: A Note on

Quality Measures for Fuzzy Association Rules. In: IFSA,

pp. 346-353. Springer-Verlag (2003).

[19] Hüllermeier, E., Yi, Y.: In Defense of Fuzzy Association

Analysis. IEEE Transactions on Systems, Man, and

Cybernetics - Part B: Cybernetics, 37, 1039- 1043

(2007).

[20] Delgado, M., Marin, N., Sanchez, D., Vila, M. A.: Fuzzy

Association Rules: General Model and Applications.

IEEE Transactions on Fuzzy Systems 11, 214-225

(2003).

[21] Shu-Yue, J., Tsang, E., Yenng, D., Daming, S.: Mining

fuzzy association rules with weighted items. In: IEEE

International Conference on SMC, pp. 1906-1911, IEEE

(2000).

