
Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

28

Analysing the Performance of Multi-core Architecture

Ram Prasad Mohanty #, Ashok Kumar Turuk *, Bibhudatta Sahoo #
Computer Science Department, National Institute of Technology

Rourkela

ABSTRACT
The advancement in technology has brought immense amount

of changes in the design and productivity of applications

designed for being used in the personal computers. By

implementing greater number of cores to the same chip also

results in facing challenges. In this case the challenge that is

being faced is the core to core communication as well as the

memory in addition to cache coherence. This paper presents a

detailed analysis on performance of FFT a divide and conquer

algorithm across with the Multi-core architecture with Internal

and external network. The architectures are being defined

using memory configuration and context configuration with

help of Multi2Sim 3.4 simulator. The performance of these

architectures have been simulated with Splash 2 Benchmark.

Keywords

Multi-core Technology, Multi-core Issues, SPLASH2

Benchmark, performance, Multi2Sim simulator

1. Introduction
In the previous decade enhancement in the processor speed

were done on a high basis but still the requirement was not

achieved. New approach was essential by the computer

architecture so that they can provide adequate enhancement in

the performance. It was predicted that by placing an extra

processing core in the same chip, there shall be enhancement

in the performance, as well as lower production of heat, but

the actual speed of the core was lower in comparison to the

single core processor. The IEEE reviewed in September 2005

that the power consumption increases up to 60% with the use

of every 400 MHz rise in clock speed, it also cited that we can

get considerable improvement in performance through the

means of dual-core approach [4].

The concept of multi-core is not an innovative one; the idea is

used in various systems, and for some period of time it has

also been used for specialized applications. But currently this

technology has become extremely conventional with Intel and

Advanced Micro Devices (AMD) developing many

commercially accessible multi-core chips. In the year 2008,

two and four core machines were commercially accessible.

Some experts are of belief that by the year 2017, 4,096 cores

would be supported by the embedded processors, 512 cores

might be upheld by the server CPUs and 128 cores could be

used by the desktop [11]. In past 30 years the desktop chips

used a single core, but today the desktop chips use four cores,

this shows that the rate of growth is really amazing.

In the multi-core processor technology CMP that is Chip

Multiprocessing is used. Execution cores have their individual

set of execution and architectural resources. The different

processor architecture is given in Fig: 1 [26].

Single Core

Multi-Core

Fig. 1 Comparison of Multi-Core and Single Core

Architecture

At the initial stage in order to enhance the performance a very

simple tractable method was used and that was to increase or

enhance the frequency of the processor. Thus from generation

to generation tracking the performance of the processor was a

very easy task. But as the frequencies rose higher and higher

at a particular stage a reality came into picture that leads to

other advancements. With higher frequency the dissipation of

heat enhanced. At the same time the power consumption also

increased. Thus the concept of implementing multiple cores

onto the processor was developed. This leads to a solution to

the heat and power issue. But it also leads to new issues and

much more interesting problematic areas.

This paper uses a simulation approach to study the

performance on two different multicore architectures using

multi2Sim. The next section discusses on various

performances related issues with multi-core processor

architecture. Section 3 describes the different multicore

architecture with processor core, cache, switch and main

memory. Simulation frame work multi2Sim is discussed with

configuration details for two different multicore architecture

(i) Multi-core processor using Internal Networks and (ii)

Multi-core processor using external Networks are presented in

Section 4. Finally, conclusions and directions for future

research are discussed in Section 5.

2. MULTI-CORE CHALLENGES
Certain problems and dispute come forward when the multiple

cores are implemented and set upon a single chip. Power and

temperature supervision is an enormous disquiet that leads to

an exponential rise with the accumulation of additional cores.

Another dispute that occurs in the multi-core is the memory

inconsistency. There will be no benefit if the programmers do

not inscribe applications that acquire the benefit of multi-core.

It is very essential that application should be written so that

varied part can run simultaneously. Seven of the issues are

described below.

CPU STATE

Interrupt Logic

Execution

Units
Cache

CPU STATE

Interrupt Logic

Execution

Units

 Cache

Cache

CPU STATE

Interrupt Logic

Cache Execution

Units

 Cache

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

29

A. Issues occurred because of handling of power and

temperature

With excessive power consumption there exists immense

amount of heat dissipation. In the same way if the chip used

for implementing a single chip holds two or more cores on it

without any kind of updation made to the chip. In such case it

may lead to consumption of double power and likewise

generation of even larger amount of heat. Also in the extreme

conditions this can lead to combustion of the computer. In

order to avoid such cases the individual cores are executed at

lower frequencies. Even in the current trend every design

integrate a power control unit which is so designed that it can

go ahead to stop or shut down the cores that remains

unutilized thus restricting the power consumption.

Heat generation is taken care by restricting the quantity of hot

spots over the chip. This too is handled during the design

level. The design is so made that the hot spots does not grow

too high in numbers and at the same time the heat generated

are spread across the chip.

B. Issues due to cache coherence

One of the most important issues still remaining a prime

concern in the multi-core environment is the distribution of

different types of caches across the chip. The L1 and the L2

cache which is distributed across the chip prove to be the

prime concern in the environment of multi-core. When each

core has its own individual cache then the value at each cache

may not hold the updated values or the actual required values.

Two types of protocols are used in general for handling cache

coherence. Snooping protocol is a protocol which can only

come into usage in systems based on bus architecture. It takes

the aid of a number of states. Using these states it can

determine which values in the cache needs to be updated. The

snooping protocol is not at all scalable. The other protocol is

directory based which is highly scalable. This protocol can

easily be used on an arbitrary network thus it can easily be

scaled to multiple processors or cores.

C. Multithreading

The major problem in using multithreading is to acquire great

performance through the multi-core processor. Reconstruction

of the application to be multithreading indicates that the

programmers have to revise in most of the cases. The

application is to be written by the programmers with the

subroutine capable to perform on various cores. This signifies

that the data dependence ought to be handled in a very

synchronized and structured way. The programmers are not

acquiring the benefit of the multi-core system if a particular

core is used more than the other. Few companies have

manufactured a new product with the capability of the multi-

core. The recent operating device, produced by the Microsoft

and Apple can run up to 4 cores.

D. Requirement of Enhancement in the memory system

It is very essential to increase the memory, when numbers of

cores are placed on a single chip. The Pentium 4 processor

which is a 32 bit processor has the capacity of addressing main

memory up to a limit of 4 GB. At the current juncture there

exists 64 bit processor as well which can handle infinite

amount of addressable memory. Thus it becomes highly

necessary to develop an enhanced memory system that can

handle this amount. At the same time higher amount of main

memory as well as even larger caches are required for the

current multithreaded multiprocessors.

E. Requirement of Enhancement in the in the interconnection

networks as well as the system bus network

Even if the amount of main memory gets enhanced still

without a proper management of the time required to handle

memory request the benefit is not utilized. These days the

interconnection network that exists between the cores has

become the prime concern of the manufacturers. When the

network gets faster the latency reduces in the communication

between cores as well as memory transactions. Recently Intel

has come up with its Quickpath Interconnect. It provides

point-to-point links at both sides of the processor which is of

high-speed. The speed of transfer is enhanced because of the

connection between the distributed shared memory, I/O hub,

Intel processors as well as the internal cores. AMD also

developed the hyper Transport technology which is a wide bus

based system. Similarly a new interconnect could be seen in

the TILE64 iMesh. This mesh consists of five networks for

high interaction between the I/O and the off-chip memory. But

till date the question remains open as which type of

communication yields the most optimized result for multi-core

processors.

F. Need of Programming in Parallel Environment

In May 2007, an employee of Intel, Shekhar Borkar mentioned

that the Moore’s Law has also been followed by the software

development. The quantity of parallelism should be doubled

during software development, so that every two years it can be

able to sustain even in the fast advancing multi-core

architecture [5]. As the total amount of core present in a

processor has to be twofold in every 18 months as per Moore’s

law. Thus the programmers need to learn how to write

programs in such a way that they can be divided and run

parallel on the multiple cores instead of using the single core

hardware only. The main reason of parallel programming is

enhance the productivity of the multi-core processors.

Some hidden concerns are being bought up in the software

being developed to be executed in the environment of multi

processors. The first question that proves to be a big concern

is how a programmer provides priority information to tasks

which have higher priority over other tasks in the queue? This

priority is not restricted to a single core instead the priority

needs to be established throughout the processor. As per the

design of the thread, even if it has been given the high priority

within the level of the core, it is not necessary that it shall get

the highest priority all over the system. It is also a hard task to

know whether the whole system is stopped to function or only

the core on which the application is running is stopped.

These problems should be solved while teaching the

developers the best practices for parallel programming. It

would be quite easy to be on track with the Moore’s law

concept if the programmers have the basic idea of the

multithreading and also have the power of programming in the

parallel environment.

G. Cores are not getting the data

One or many cores may be remaining idle by waiting for the

data, if a program has not been developed properly to utilize

the cores of a multiprocessor. This can be visible if the multi-

core system is used to run a single-threaded application. In

such case the thread will function on a single core while the

other cores will be have no function to operate on? Still these

cores keep on making calls to the main memory which utilizes

a loss of clock cycles. This shall add on to the penalty thus

reducing the overall performance. Thus a proper replacement

policy need to be utilized which can lead to removal of all the

cache entries that has been processed by the other cores. With

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

30

the addition of number of cores in the processor, this problem

gets more deep and troublesome.

3. MULTI-CORE

ARCHITECTURES
This section outlines the basic details of four different multi-

core architectures (i) Multi-core processor with Internal

Network, (ii) Multi-core Processor with External Network,

(iii) Mul;ti-core processor with Ring Network and (iv)

Heterogeneous system with CPU and GPU cores [22].

Few of the Multi-Core Architecture which can be used for a

thorough performance analysis of the divide and conquer

algorithms on Multi-core Processor with Internal Network as

described below.

Fig. 2 Multi-Core Processor using Internal Network

In the Fig. 2 the architecture of a multi-core processor with

internal network has been shown that has a single private L1

cache per core, to unify the instruction and data requests. Two

L2 caches are being used to share between all the three cores.

 Multi-core processor with External Network is shown in

Fig.3. The connectivity of L1-to-L2 network consists of two

distinct switches and 5 nodes (n0, n1, n2, n3, n4) [22], which

further communicate with main memory through another

switch.

 The third architecture of multi-core processor is complex and

uses ring network to connect main memory modules with

multiple cores. Typical 4 core multi-core processor

architecture is shown in Fig 4. This architecture is a more

complex architecture than the above two. It uses a 4-core

processor which have private L1 data caches and a common

L1 instruction cache shared by every two cores as shown in

Fig 4

The two L2 caches serve the independent higher level L1

caches.

The computing capability of multicore processor can be

further optimized with the help of CPU and GPU integration.

A heterogeneous system which has CPU and GPU cores as

shown in Fig: 5

Fig. 3 Multi-Core processor using External Networks

This architecture uses CPU and GPU cores as well as it has a

single CPU core formed of two hardware threads which is

used together with a GPU having 4 compute units. Each CPU

thread has a private L1 cache, while one L1 cache is shared

with every two GPU compute units [22]. We have analyzed

the performance of two architectures (i) Multi-Core

Architecture with internal network, and (ii) Multi-Core

Architecture with external network using multi2Sim simulator.

4. Experimental results

L1-0

Core 0 Core 1 Core 2

L1-1 L1-2

 SWITCH

L2-0 L2-1

 SWITCH

Main Memory

L1-0

Core 0 Core 1 Core 2

L1-1 L1-2

 SWITCH-0

L2-0 L2-1

 SWITCH

Main Memory

 SWITCH-1

n0 n1 n2

n3 n4

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

31

Fig. 4 Multi-Core processor using Ring Network [22]

Four major steps were involved in our research:

1) Setting up the environment on which the code gets

executed

 2) Setting up the code that the simulator will execute

3) Execute single-core simulations (Collect and Analyze

Data)

4) Execute multi-core simulations (Collect and Analyze

Data)

For the first step it was decided to use the multi2Sim

simulator because of its versatility of implementing multi-core

architectures. Also we had to fix a commonly used benchmark.

Fig. 5 Heterogeneous system with CPU and GPU cores

[22]

The single core simulations were also executed. The

following factors were changed: L1 Cache size, L2 Cache size,

and Bus width, Latency, and cache coherence protocols.

Instead of varying the values for each factor repeatedly, we

decided the best possible values for each and then proceeded

with the execution of the code.

A. Simulation Environment

With the advancement of processor architecture over time,

benchmarks that were used to compute the performance of

these processors are not as practical today as they were before

due to their incapability to stress the new architectures to their

utmost capacity in terms of clock cycles, cache, main memory

and I/O bandwidth.

Hence new and enhanced benchmarks have to be developed

and used. The SPLASH-2 is one such benchmark that has

concentrated workloads based on real applications and is a

descendant of the SPLASH benchmark. Other such

benchmark includes PARSEC, CPUSPEC2006, and Mini

Bench. The SPLASH-2 has 11 programs. The details of these

benchmark programs are shown in Tables 2.1 [23, 24]. All

experiments were run on systems with 32 bit LINUX

operating system and Intel Core 2 Duo processors using the

multi2Sim simulator.

TABLE I Specification of SPLASH2 Benchmark

The Multi2Sim 3.4 is used to conduct the experiment that uses

gcc, glib, freeglut and gtk+ packages.

B. Performance analysis of Multicore Architecture with

Internal Network

We analyzed the performance of the code across the multi-

core architectures with internal networks as well as with

external networks. The detailed architecture for the same has

been provided in the figure 3 :

The cache specification for the same architecture is shown

as below [22]:

Sl

No.

Benchmar

k

Application

Domain

Problem

Size

1 Barnes High-

Performance

Computing

65536

Particles

2 Cholesk

y

High-

performance

computing

Tk29.0

3 FFT Signal

Processing

4,194,30

4 data

points

4 FMM High-

Performance

Computing

65536

Particles

5 LU High-

Performance

Computing

1024X1

024 matrix,

64X64

Blocks

6 Ocean High-

Performance

Computing

514X51

4 Grid

7 RADIO

SITY

Graphics Large

room

8 RADIX General 8388608

integers

9 RAYTR

ACE

Graphics Car

1

0

WATE

R-

NSQUAR

ED

High-

Performance

Computing

4096

molecules

1

1

WATE

R-

SPATIAL

High-

Performance

Computing

4096

molecules

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

32

[CacheGeometry geo-l1]

Sets = 128

Assoc = 2

BlockSize = 256

Latency = 2

Policy = LRU

Ports = 2

[CacheGeometry geo-l2]

Sets = 512

Assoc = 4

BlockSize = 256

Latency = 20

Policy = LRU

Ports = 4

[Module mod-l1-0]

Type = Cache

Geometry = geo-l1

LowNetwork = net-l1-l2

LowModules = mod-l2-0

mod-l2-1

[Module mod-l1-1]

Type = Cache

Geometry = geo-l1

LowNetwork = net-l1-l2

LowModules = mod-l2-0

mod-l2-1

[Module mod-l1-2]

Type = Cache

Geometry = geo-l1

LowNetwork = net-l1-l2

LowModules = mod-l2-0

mod-l2-1

[Module mod-l2-0]

Type = Cache

Geometry = geo-l2

HighNetwork = net-l1-l2

LowNetwork = net-l2-mm

LowModules = mod-l2-mm

AddressRange = BOUNDS

0x00000000 0x7FFFFFFF

 [Network net-l1-l2]

DefaultInputBufferSize =

1024

DefaultOutputBufferSize =

1024

DefaultBandwidth = 256

[Network net-l2-mm]

DefaultInputBufferSize =

1024

DefaultOutputBufferSize =

1024

DefaultBandwidth = 256

[Module mod-l2-1]

Type = Cache

Geometry = geo-l2

HighNetwork = net-l1-l2

LowNetwork = net-l2-mm

LowModules = mod-l2-mm

AddressRange = BOUNDS

0x80000000 0xFFFFFFFF

[Module mod-mm]

Type = MainMemory

BlockSize = 256

Latency = 200

HighNetwork = net-l2-mm

[Entry core-0]

Type = CPU

Core = 0

Thread = 0

DataModule = mod-l1-0

InstModule = mod-l1-0

[Entry core-1]

Type = CPU

Core = 1

Thread = 0

DataModule = mod-l1-1

InstModule = mod-l1-1

[Entry core-2]

Type = CPU

Core = 2

Thread = 0

DataModule = mod-l1-2

InstModule = mod-l1-2

C. Performance of Multicore Architecture with External

Network

In the Fig 4 architecture of a multi-core processor with

external network has been shown.

In this architecture each of the cores is associated with a L1

and L2 cache module. The nodes which are connected to the

L1 cache are connected to the switch 0 while the ones

connected to the L2 cache is connected to another switch.

The cache configuration for the given setup is given as below:

[CacheGeometry geo-l1]

Sets = 128

Assoc = 2

BlockSize = 256

Latency = 2

Policy = LRU

Ports = 2

[CacheGeometry geo-l2]

Sets = 512

Assoc = 4

BlockSize = 256

Latency = 20

Policy = LRU

Ports = 4

[Module mod-l1-0]

Type = Cache

 [Module mod-l2-1]

Type = Cache

Geometry = geo-l2

HighNetwork = net0

HighNetworkNode = n4

LowNetwork = net-l2-mm

AddressRange = BOUNDS

0x80000000 0xFFFFFFFF

LowModules = mod-mm

[Module mod-mm]

Type = MainMemory

BlockSize = 256

Latency = 100

HighNetwork = net-l2-mm

[Network net-l2-mm]

DefaultInputBufferSize =

Geometry = geo-l1

LowNetwork = net0

LowNetworkNode = n0

LowModules = mod-l2-0

mod-l2-1

[Module mod-l1-1]

Type = Cache

Geometry = geo-l1

LowNetwork = net0

LowNetworkNode = n1

LowModules = mod-l2-0

mod-l2-1

[Module mod-l1-2]

Type = Cache

Geometry = geo-l1

LowNetwork = net0

LowNetworkNode = n2

LowModules = mod-l2-0

mod-l2-1

[Module mod-l2-0]

Type = Cache

Geometry = geo-l2

HighNetwork = net0

HighNetworkNode = n3

LowNetwork = net-l2-mm

AddressRange = BOUNDS

0x00000000 0x7FFFFFFF

LowModules = mod-mm

1024

DefaultOutputBufferSize =

1024

DefaultBandwidth = 256

[Entry core-0]

Type = CPU

Core = 0

Thread = 0

DataModule = mod-l1-0

InstModule = mod-l1-0

[Entry core-1]

Type = CPU

Core = 1

Thread = 0

DataModule = mod-l1-1

InstModule = mod-l1-1

[Entry core-2]

Type = CPU

Core = 2

Thread = 0

DataModule = mod-l1-2

InstModule = mod-l1-2

The network configuration set for this external network is as

shown below:

[Network.net0]

DefaultInputBufferSize =

1024

DefaultOutputBufferSize =

1024

DefaultBandwidth = 256

[Network.net0.Node.sw0]

Type = Switch

[Network.net0.Node.n0]

Type = EndNode

[Network.net0.Node.n1]

Type = EndNode

[Network.net0.Node.n2]

Type = EndNode

[Network.net0.Node.sw1]

Type = Switch

[Network.net0.Node.n3]

Type = EndNode

[Network.net0.Node.n4]

Type = EndNode

[Network.net0.Link.sw0-n0]

Source = sw0

Dest = n0

Type = Bidirectional

[Network.net0.Link.sw0-n1]

Source = sw0

Dest = n1

Type = Bidirectional

 [Network.net0.Link.sw0-n2]

Source = sw0

Dest = n2

Type = Bidirectional

[Network.net0.Link.sw0-sw1]

Source = sw0

Dest = sw1

Type = Bidirectional

[Network.net0.Link.sw1-n3]

Source = sw1

Dest = n3

Type = Bidirectional

[Network.net0.Link.sw1-n4]

Source = sw1

Dest = n4

Type = Bidirectional

5. CONCLUSIONS AND FUTURE

WORK
The Multi-core processors are developed to enhance

performance of computing. The utilization of the processor

can be 100% only when the applications being executed is

multithreaded. Only a few applications exists which are

multithreaded and can be executed parallel. At the same time

only a few programmers have the idea and intellect to write

programs that can utilize the multi-core processor properly.

This study helps us to select appropriate cores in a processor,

cache organization/configuration and interconnect network. .

Special Issue of International Journal of Computer Applications (0975 – 8887)

International Conference on Computing, Communication and Sensor Network (CCSN) 2012

33

The same program shall be executed on the ring network and

heterogeneous system with CPU and GPU cores and a

thorough analysis of the performance shall be gathered.

6. REFERENCES

[1] Cameron Hughes and Tracey Hughes,”Professional

Multi-core Programming”,Wiley Publishing,2009

[2] Darryl Gove, “ Multi-core Application Programming”,

Pearson, 2011

[3] Julian Bui and Chegguang Xu and Sudhanva

Gurumurthi, “Understanding performance issues on both

single core and multi-core Architecture”, Computer

Organization , 2007

[4] John Freuhe, “Planning Considerations for Multi-core

Processor Technology”, Dell Power Solutions, May 2005.

[5] P. Frost Gorder, “Multi-core Processors for Science and

Engineering”, IEEE CS, March/April 2007.

[6] L. Peng et al, “Memory Performance and Scalability of

Intel‟s and AMD‟s Dual-Core Processors: A Case

Study”, IEEE, 2007.

[7] D. Geer, “Chip Makers Turn to Multi-core Processors”,

Computer, IEEE Computer Society, May 2005.

[8] D. Pham et al, “The Design and Implementation of a

First-Generation CELL Processor”, ISSCC.

[9] R. Goering, “Panel Confronts Multi-core Pros and

Cons”, [Online]. Available:

http://www.eetimes.com/news/design/showArticle.jhtml?

articleID=183702416

[10] R. Merritt, “CPU Designers Debate Multi-core Future”,

EETimes Online, February 2008, [Online]. Available:

http://www.eetimes.com/showArticle.jhtml?articleID=20

6105179

[11] Bryan Schauer, “Multi-core Processors – A Necessity”,

ProQuest, September 2008.

[12] Bai Jun-Feng, “Application Development Methods

Based On Multi-core Systems”, American Journal of

Engineering and Technology Research”, 2011.

[13] S. Balakrishnan et al, “The Impact of Performance

Asymmetry in Emergng Multi-core Architectures”,

Proceedings of the 32nd International Symposium on

Computer Architecture, 2005.

[14] D. Geer, “For Programmers, Multi-core Chips Mean

Multiple Challenges”, Computer, September 2007.

[15] B. Brey, “The Intel Microprocessors”, Sixth Edition,

Prentice Hall, 2003.

[16] D. Stasiak et al, “Cell Processor Low-Power Design

Methodology”, IEEE Micro, September 2005

[17] W.Knight, “Two Heads are better than One”, IEEE

Review, September 2005

[18] D.Olson, “Intel Announces Plan for up to 8-core

Processor” Slippery Brick, March 2008.

[19] S.Mukherjee and M. Hill, “Using Prediction to

accelerate Coherence Protocols”, ISCA, 1998.

[20] R.Kumar et al, “Single-ISA Heterogeneous Multi-core

Architectures with Multithreaded Workload

Performance”, ISCA, June 2004.

[21] Zhongliang Chan et al, “The Multi2Sim Simulation

Framework”

[22] R. Ubal and J. Sahuquillo and S. Petit and P. L\'opez,

“ Multi2Sim: A Simulation Framework to Evaluate

Multi-core-Multithreaded Processors”,Proc. of the 19th

Int'l Symposium on Computer Architecture and High

Performance Computin,Oct, 2007

[23] S.C. Woo and M. Ohara and E. Torrie and J. P. Singh

and A. Gupta, “ The SPLASH-2 Programs:

Characterization and Methodological

Considerations”,Proc. of the 22nd Int'l Symposium on

Computer Architecture, June,1995.

[24] Tribuvan Kumar Prakash, “ PERFORMANCE

ANALYSIS OF INTEL CORE 2 DUO

PROCESSOR”,BioPerf, August,2007.

[25] Christian Bienia and Sanjeev Kumar and Kai Li,

“ PARSEC vs. SPLASH-2: A Quantitative Comparison

of Two Multithreaded Benchmark Suites on Chip-

Multiprocessors”, Princeton publications, September,

2008

[26] Shameem Akhter and Jason Roberts, “ Increasing

Performance through Software Multi-threading”, Intel

Press, 2006

