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ABSTRACT 

This paper presents a framework that extends OpenCL by 

distributing computing process to many computing resources 

connected via network and enables the computing resources to 

run in parallel. Using JSON RPC (Remote Procedure Call 

technique relying on JavaScript Object Notation) in 

communication layer, Distributed OpenCL framework 

provides platform and operating system independency. Using 

this framework, a host program executed on a computer that 

has no OpenCL support is able to use other computing 

resources distributed on network in parallel. Results show that 

OpenCL platform model can be extended to network scale to 

provide a vendor, architecture and operating system 

independent and a parallel computing environment with 

reasonable communication overhead.  
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1. INTRODUCTION 
Since the architecture of Graphics Processing Units (GPU) 

uses pipeline model, GPUs are convenient for processing 

massive data using SIMD (Single Instruction Multiple Data) 

technique which provides data-level parallelism. Although 

primitive GPUs were not programmable and only used for 

graphics rendering, with the improvements in GPU 

technology, modern GPUs are evolved to provide 

programmable interfaces and this improvement has brought 

General Purpose programming on GPUs (GPGPU) concept in 

use. With extensive use of this concept GPUs have been a part 

of main computing resources of a computer along with CPUs 

and multi-core CPUs.  

As a result of widespread use of GPGPU concept, GPU 

manufacturers have introduced GPGPU programming 

languages such as C for Graphics, Close to Metal (from 

AMD/ATI), CUDA (from NVIDIA) [1], BrookGPU (from 

Stanford University) [2] and DirectCompute (from Microsoft) 

[3]. However these programming languages were platform 

and vendor specific so they were not supporting the use of the 

programs in multi vendor environments and portability 

between devices. These languages also needed developers to 

be familiar with specific features of language and 

architectures of devices that they aim to program.    

To overcome the problems above, OpenCL framework has 

been introduced by Khronos Group [4] with contribution and 

collaboration of leading manufacturers such as Apple, IBM, 

Intel, AMD and NVIDIA. OpenCL framework consists of a C 

based language and a universal API set that enables to write 

and execute programs between heterogeneous platforms such 

as GPUs, CPUs and other processors. Since OpenCL 

standards are being supported and accepted as common 

standards by CPU and GPU vendors, it provides compatibility 

and portability between vendors. Although different vendors 

have different implementations of OpenCL, they comply with 

the same standards for data types, method signatures and API 

set. 

The features described above make OpenCL a convenient 

programming framework for heterogeneous environment and 

abstract technical details of vendor specific implementations 

and devices architectures from developers. Considering the 

advantages and properties of OpenCL, we claim it is possible 

to extend the benefits of OpenCL by designing a system 

which consists of distributed computing resources and hosts 

that use these computing resources connected via network.  

In this study we propose a framework that extends OpenCL on 

network scale using JSON RPC communication technique 

between hosts and computing resources. Since the framework 

is based on OpenCL, it covers the advantages of OpenCL such 

as heterogeneous resource usage, vendor and architecture 

independency, moreover it increases the level of parallelism 

by increasing number of computing resources and by using 

JSON RPC for communication it enables operating system 

and platform independency in communication layer.  

The rest of the paper is organized as follows. In Section II we 

present an overview of OpenCL platform and JSON RPC, in 

Section III we explain the design and implementation of 

Distributed OpenCL, in Section IV we show the experiments 

and test results for our study and comparison to other similar 

studies on this field. In section V we present our conclusions.  

2. OPENCL & JSON RPC OVERVIEW 

2.1 OpenCL Overview 
OpenCL (Open Computing Language) is a framework for 

writing programs which execute across heterogeneous 

platforms consisting of CPUs, GPUs and other processing 

units. OpenCL includes a C based language (based on C99) to 

write functions that execute on devices which supports 

OpenCL standards and an API to control these platforms. 

Target of OpenCL is to let the developers write portable, 

vendor and device independent programs and abstract them 

from complex technical specifications and detailed 

architectures of computing devices. In our study we followed 

OpenCL v1.1 specification [5]. 

OpenCL structure can be described as combination of the 

following models: 

 Platform Model 
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 Execution Model 

 Memory Model 

 Programming Model 

2.2 OpenCL Platform Model 
The Platform Model consists of a host connected to one or 

more OpenCL devices. An OpenCL device is divided into one 

or more computing units. Each computing unit is divided into 

one or more processing elements. Processing elements are 

where the computation is done. An OpenCL device can be a 

GPU, CPU or another type of processor. OpenCL systems are 

identified with version of the platform, version of devices and 

version of OpenCL C language supported on the devices. 

OpenCL application running on a host submits commands to 

devices to run on the processing elements on the devices. 

Processing elements execute single stream of instructions as 

SIMD units or SPMD (Single Program Multiple Data) units 

depending on the type of processing element. 

2.3 OpenCL Execution Model 
There are two parts for execution of an OpenCL program: 

Kernels and host program. The host program defines context 

for the kernels and manage their execution, and the kernels 

execute one or more OpenCL devices. When a kernel is 

submitted for execution by the host, an index space is defined. 

For each point in the index space an instance of kernel is 

created. These kernel instances are called work-items. Each 

work item has a global ID which is given according to position 

of corresponding point in the index space. Work-items are 

organized into work groups. Processing elements in a 

computing unit can concurrently execute work-items in a work 

group. With this execution model, OpenCL supports data-

parallel and task-parallel programming models. 

2.4 OpenCL Memory Model 
The host application creates memory objects on global 

memory using OpenCL API and enqueue memory commands 

operating on these memory objects. Memory blocks of host 

application and computing devices usually run independent. In 

case of interaction is needed between host application memory 

and computing device memory, either transferring of memory 

blocks occur or host application uses mapping / unmapping 

methods to reach memory blocks of computing devices.  

2.5 JSON RPC Overview 
JSON RPC is a remote procedure call protocol which sends 

RPC commands between server and client by encoding data 

into JSON format [6]. In JSON encoding format data is 

converted to UTF-8 JSON strings and transferred via HTTP or 

TCP/IP transfer protocols. In Distributed OpenCL framework, 

TCP/IP communication protocol is used since it is faster than 

HTTP protocol. Open source JSONRPC-CPP framework is 

used for client-server communication. Some modifications are 

done on the framework to decrease message size and to enable 

splitting large TCP messages at TCP client, which’s size are 

greater than maximum allowed TCP package size, and 

remerging them at TCP server. To avoid TCP connection 

starting cost for each API call, TCP connection between client 

and server is opened at the first OpenCL API call from the 

host application, kept alive during the execution of program 

and closed at the end of the program. Native OpenCL types 

are converted into native C++ types and encoded to JSON 

format (see Table 1).   

 

Table 1. Conversion for OpenCL data types into JSON 

encodable C++ data types 

OpenCL Type 
Equivalent 

C++ type 

Encoding to reduce data 

size 

Integer types 

eg: cl_int, 

cl_uint, 

cl_bool, 

cl_ulong 

int, 

unsigned 

int, long 

unsigned int  

- 

Pointer types 

eg: 
cl_platform_id, 

cl_device_id, 

cl_context, 

cl_mem, 

cl_program, 

cl_kernel  

Pointer 

converted to 

unsigned 

long 

- 

Data 

parameters 

eg: 

float array, 

integer array, 

char array 

Converted 

to byte array 

from void 

pointer 

Encoded as string using 

base64 encoding 

 
Compared to similar RPC technologies like Microsoft RPC, 

XML RPC, Java RMI; JSON RPC is more suitable to use for 

our framework since it provides platform independency, and 

reasonable message size. 

3. DISTRIBUTED OPENCL 

3.1 Distributed OpenCL Overview 
Distributed OpenCL is a framework that extends OpenCL on 

network scale by preserving OpenCL functionality and 

advantages described in the above sections. Distributed 

OpenCL framework has a client-server architecture that can 

consist of multiple clients and multiple servers. Distributed 

OpenCL framework consists of the following components:  

 Clients 

 Distribution Layer 

 Servers 

Clients run OpenCL host applications and OpenCL API calls 

from host applications are redirected to servers on the network 

by distribution layer running on the client machines. OpenCL 

functionality is provided on servers. Figure 1 represents the 

architecture of Distributed OpenCL framework. 
 

When the OpenCL host application running on the client 

makes an API call, this call is sent to the distribution layer 

running on the client. Distribution layer converts API calls to 

JSON message packages by marshalling. These JSON 

messages are sent to the servers registered in the system using 

JSON RPC communication technique. JSON RPC server 

application on the server machines listens to the incoming 

JSON messages and converts these messages to OpenCL API 

calls by unmarshalling. With this method, OpenCL API calls 

are replicated on the server with the same parameters from the 

client. Server converts responses from OpenCL computing 

devices to JSON messages and send back result to client 

which made the API call. Since OpenCL computing devices 

keep the context and state data of program in their own 

memory, servers do not keep any context or state data of client 

programs. Pointers to the instances of OpenCL types such as 

cl_mem, cl_context, cl_program, cl_kernel etc. that are created 

by OpenCL API calls are allocated in heap section of server 

memory to provide access by pointer addresses of them to use 
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in following OpenCL API calls. These allocated spaces are 

freed when release functions such as clReleaseMemObject, 

clReleaseContext etc. are called by the corresponding host 

application. 

Considering GPU architecture performs operations in SIMD 

model, data which will be processed can be distributed to 

multiple servers registered in the system. This feature reduces 

the workload of one server so reduces the workload of each 

processing unit in the server and results speedup for 

calculation by increasing level of parallelism.  

 
Figure 1. Distributed OpenCL framework architecture 

 

3.2 Client 
Client refers to original OpenCL host applications running on 

a client machine. These host applications can be compiled to 

use with Distributed OpenCL framework just by replacing 

original OpenCL include directory reference to Distributed 

OpenCL distribution layer include directory reference and 

OpenCL library reference to distribution layer library 

reference to use in linking step. After compilation, OpenCL 

API calls are handled by our distribution library instead of 

original OpenCL implementation.  

3.3 Distribution Layer 
Distribution layer is the Distributed OpenCL library running 

on the client. The library consists of copies of OpenCL header 

files that contains OpenCL type declarations and function 

signatures, and C++ source file which simulates function 

bodies for OpenCL functions declared in OpenCL v1.1 

specification. OpenCL API calls are handled by our 

distribution library instead of original OpenCL 

implementation. For each API call, distribution library 

executes corresponding functions and these functions convert 

and combine parameter values into JSON messages adding 

function name to call. After this step, JSON messages are sent 

to server by TCP/IP based JSON RPC client running on the 

distribution layer. Functions in distribution layer also convert 

returned JSON messages from server into OpenCL types and 

send results back to the host application. Type conversion 

operations, binary data encoding for function parameters and 

binary data decoding for function results are done by the 

distribution library. 

3.4 Server 
JSON RPC server application running on the servers listens to 

the corresponding ports to handle incoming JSON messages. 

Corresponding handle method for the incoming JSON 

messages are called by JSON RPC Server application and 

parameters in the JSON message are unmarshalled into 

OpenCL data types and corresponding OpenCL API function 

which is declared in the JSON message is called via original 

OpenCL API with parameter values in the message. Type 

conversion from JSON values to OpenCL types and binary 

data decoding for the data parameters in the JSON message 

are done at this step. OpenCL computations are done by 

computing devices (GPUs or CPUs) on the server. Return 

values from the OpenCL API are marshaled into JSON format 

by type conversions and binary data encoding if exist, then 

result JSON message is sent back to the client. Results from 

the servers are gathered, combined, unmarshalled in the client 

by distribution layer and returned to host application. TCP 

connection from client to the server is established at the first 

call to the server and kept open during the execution of host 

program to improve the performance.  

Each server in the system can serve concurrently to multiple 

clients or multiple host programs since OpenCL API keeps 

context and state information. Pointers to the OpenCL types 

like cl_mem, cl_context etc. are kept in hash maps in the 

server application memory matched with corresponding host 

application IDs. 

3.5 Providing Parallel Execution 
Since GPU performs operations in SIMD model, many 

OpenCL applications can be parallelized just by partitioning 

input data into blocks. For many problems such as 

convolution, edge detection etc., applications can also be 

parallelized by partitioning input data into overlapping blocks. 

By modifying host applications to run with divided partitions 

of input data, Distributed OpenCL framework provides 

parallel execution. Figure 2 shows parallel execution in 

Distributed OpenCL framework. After partitioning input data, 

for each partition, host applications can be run in a multi-

thread architecture and results of computations can be 

gathered using shared memory or similar parallel data 

distribution systems. 

 

Figure 2. Distributed OpenCL parallel execution 

4. EXPERIMENTS 
To measure performance of Distributed OpenCL Framework, 

two sets of experiments are performed. As the first set of 

experiments (Distributed OpenCL Overhead Experiments) we 

compared execution times between native OpenCL (NCL), 

Distributed OpenCL with client program and server program 

running on the same machine (DCL Local), client program 

and server program running on different machines (DCL 

Remote). As the second set of experiments (Parallel Execution 

Experiments) we compared execution times for client program 

running on one remote server; two remote servers and four 

remote servers by partitioning input data and running host 

applications in parallel. We used three different host 
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applications executing three different kernel functions: vector 

addition, 2D convolution and N-Body simulation.  

During the experiments we have seen that transferred data size 

is the main determinative factor for performance difference 

between native OpenCL and our system. Therefore the results 

we present belong to the experiments with “vector addition” 

application since it sufficiently represents the characteristic 

differences between two systems. Experiment results are 

presented and compared considering execution times by 

excluding OpenCL kernel function dynamic compilation time. 

Tests are performed for various work item sizes from 32 to 

1M. Since the test application adds two float arrays and 

returns a result float array, data transfer size in bytes is 

calculated with formula “(1)” 

D.T. = 3 x sizeof(float) x Work Item Size                           (1) 

D.T. = 12 x Work Item Size 

Each test was run 10 times, median of execution times are 

presented as the results. For remote tests, client and servers 

are connected with 100 Mbit Ethernet (LAN). Specifications 

for the computers that we used in experiments can be seen in 

Table 2. Detailed specifications for the GPUs can be obtained 

from web sites of vendors [7] [8]. 

Table 2. Test Computers 

Comp 

ID 
OS CPU RAM GPU 

A 
Windows 7 

64 bit 

Intel 

Core i7 

4 GB 

DDR 3 

NVIDIA 

525M 

B 
Windows 7 

64 bit 

Intel 

Core i7 

4 GB 

DDR 3 

ATI 

RADEON 

HD 6370M 

C 
Ubuntu 

Linux 64 bit 

Intel 

Core 2 

Duo 

4 GB 

DDR 3 

NVIDIA 

240M 

D 
Ubuntu 

Linux 64 bit 

Intel 

Core i7 

4 GB 

DDR 3 

NVIDIA 

540M 

E 
Windows 7 

64 bit 

Intel 

Core i7 

8 GB 

DDR 3 

NVIDIA 

555M 

F 
Windows 7 

64 bit 

Intel 

Core i5 

3 GB 

DDR 3 

NVIDIA 

520M 

 

4.1 Distributed OpenCL Overhead 

Experiments 
Overhead experiments are done to compare performance of 

native OpenCL and Distributed OpenCL framework. 

 Test 1: Test application is run with native OpenCL on 

the computers. Results are presented in Table 3 for 

comp. A, B and C (NCL). 

 Test 2: Test application is run with Distributed OpenCL 

on the computers as client and server application 

running on the same machine. Results are presented in 

Table 3 for comp. A, C, and D (DCL Local). 

 Test 3: Test application is run with Distributed OpenCL 

on the computers as client and server application 

running on different machines. Tests are performed with 

combinations of two machines. Results are presented in 

Table 3 for comp. C (client) to A (server), A (client) to 

E (server), A (client) to C (server) and C (client) to D 

(server) (DCL Remote). 

4.2 Parallel Execution Experiments 
Parallel execution experiments are done to measure 

Distributed OpenCL framework performance when the work 

load is distributed to more than one computing nodes running 

parallel.  

 Test 1: Test application is run with Distributed OpenCL 

on combinations of two machines as one client and one 

server. Results are presented in Table 4 for comp. C 

(client) to A (server), A (client) to E (server) (DCL 

Remote 1 Comp).  

 Test 2: Test application is run with Distributed OpenCL 

on combinations of three machines as one client and two 

servers. Results are presented in Table 4 for comp. C 

(client) to A and E (servers), A (client) to D and E 

(servers) (DCL Remote 2 Comp). 

 Test 3: Test application is run with Distributed OpenCL 

on combinations of five machines as one client and four 

servers. Results are presented in Table 4 for comp. C 

(client) to A, B, D and E (servers); F (client) to A, B, D 

and E (servers) (DCL Remote 4 Comp). 

4.3 Evaluation of Results 
In the first set of experiments (see Table 3), for Test 1 we 

made the following inferences:  

 Execution time does not increase linearly or one-to-one 

by the increase in work item size since GPU architecture 

executes the work items in parallel. 

 Native OpenCL performance between NVIDIA GPU 

(NCL A) and an equivalent ATI GPU (NCL B) does not 

differ too much.  

 However for an earlier model NVIDIA GPU (NCL C), 

native OpenCL execution time may differ dramatically 

when we increase work item size since number of cores 

and buffer size is smaller.  

In Test 2 it can be seen:  

 When we compare DCL Local to the NCL, execution 

time increases because of communication overhead. 

Communication overhead is especially effective for 

OpenCL functions such as clEnqueueWriteBuffer, 

clEnqueueReadBuffer, clCreateBuffer, which send or 

receive data between host application and GPU device.    

Communication overhead increases near linear by the 

increase in data transfer size at large data sizes. 

 Depending on the operating system configurations, TCP 

overhead increases faster after a certain data transfer 

size because data cannot be transferred in one TCP 

package. 

 For smaller data sizes sending data from Linux 

operating systems to Linux or Windows operating 

systems is faster because of operating system 

characteristics. As the transfer size increases, this major 

difference cannot be seen. 
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Table 3. Results for the first experiment set (HOST ID: ID of client computer, GPU ID: ID of server computer, D.T.: Data 

Transfer size, E.T.: Execution Time) 

     NCL NCL NCL 

DCL 

Local 

DCL 

Local 

DCL 

Local 

DCL 

Remote 

DCL 

Remote 

DCL 

Remote 

DCL 

Remote 

    Test # T 1 T 1 T 1 T 2 T 2 T 2 T 3 T 3 T 3 T 3 

   HOST ID             C A A C 

   GPU ID A B C A C D A E C D 

Work 

Item 

Size D.T. (B)  

D.T. 

(KB) 

D.T. 

(MB) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

E.T. 

(ms) 

32 384 0 0 2 4 2 22 2 2 8 46 44 8 

64 768 1 0 2 4 2 22 3 3 8 44 45 8 

128 1536 2 0 3 5 2 23 3 3 8 44 46 9 

256 3072 3 0 5 8 2 25 4 4 11 49 48 12 

1024 12288 12 0 6 9 3 23 13 9 15 52 50 15 

4096 49152 48 0 9 11 12 50 48 32 52 53 52 49 

16384 196608 192 0 10 13 44 142 156 104 164 111 158 125 

65536 786432 768 1 11 16 170 325 355 298 330 325 423 328 

262144 3145728 3072 3 14 18 702 507 986 504 896 892 1325 878 

524288 6291456 6144 6 15 19 1356 979 2016 965 1572 1746 2896 1753 

1048576 12582912 12288 12 16 22 2749 1941 3457 1906 3167 3309 5268 3468 

 

Table 4. Results for the second experiment set (HOST ID: ID of client computer, GPU IDs: ID of server computers, D.T.: Data 

Transfer size, E.T.: Execution Time) 

     

DCL 

Remote 1 

Comp 

DCL 

Remote 1 

Comp 

DCL 

Remote 2 

Comp 

DCL 

Remote 2 

Comp 

DCL 

Remote 4 

Comp 

DCL 

Remote 4 

Comp 

    Test # Test 1 Test 1 Test 2 Test 2 Test 3 Test 3 

   
HOST 

ID C A C A C F 

   GPU IDs A E A - E D - E A - B - D - E A - B - D - E 

Work 

Item 

Size D.T. (B)  

D.T. 

(KB) 

D.T. 

(MB) E.T. (ms) E.T. (ms) E.T. (ms) E.T. (ms) E.T. (ms) E.T. (ms) 

32 384 0 0 8 46 9 44 8 42 

64 768 1 0 8 44 9 44 9 43 

128 1536 2 0 8 44 9 46 9 44 

256 3072 3 0 11 49 11 46 9 45 

1024 12288 12 0 15 52 14 48 10 47 

4096 49152 48 0 52 53 29 53 16 52 

16384 196608 192 0 164 111 89 75 54 52 

65536 786432 768 1 330 325 181 182 165 123 

262144 3145728 3072 3 896 892 452 448 334 330 

524288 6291456 6144 6 1572 1746 833 854 487 489 

1048576 12582912 12288 12 3167 3309 1637 1622 923 918 
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 While communication overhead is independent from the 

GPU models, impact of communication overhead to the 

total execution time may change since execution time 

for the OpenCL functions on the server machine 

changes (NCL A vs DCL Local A, NCL C vs, DCL 

Local C). 

In Test 3 we have seen that when we compare DCL Local to 

DCL Remote, execution times increases to 1.5 to 2 times with 

100 Mbit Ethernet connection. 

The second set of experiments (see Table 4) shows us 

distributing workload to multiple computing nodes running 

parallel increases performance. In Figure 3 it can also be seen, 

execution times decreases almost by the same ratio with the 

increase in number of computing nodes. For very small data 

sizes execution time does not change by increasing number of 

nodes because in this range rather than OpenCL input - output 

data transfer operations, other OpenCL function calls are also 

effective on execution time. 

 

Figure 3. Distributed OpenCL parallel execution 

 

4.4 Comparison to the Previous Studies 
During our research we have come across several studies such 

as Many GPUs Package (MPG) [9], Virtual OpenCL Cluster 

Platform (VCL) [10], Remote CUDA (rCUDA) [11], Hybrid 

OpenCL [12], CLuMPI [13] and GPU Clusters for High-

Performance Computing [14] on distributed GPGPU 

computing. These implementations are either vendor specific 

or operating system dependent. In our study, we have 

designed and implemented a both vendor independent and 

operating system independent framework by using OpenCL as 

GPGPU computing platform and TCP / IP protocol based 

JSON RPC communication technique.  

5. CONCLUSIONS 
OpenCL exposes a framework with a universal API set that 

enables to write and execute programs between 

heterogeneous platforms such as GPUs, CPUs and other 

processors. It also provides platform – vendor independency 

and portability. By increasing acceptance of OpenCL 

standards, and also contribution and collaboration of leading 

manufacturers its usage also increases day by day compared 

to other GPGPU languages / frameworks.  
 

Considering features and architecture of OpenCL it also 

allows distribution of computing nodes on network scale. In 

this study we presented a framework that consists of clients 

where host applications run, servers where computing devices 

run and communication between them is supplied using JSON 

RPC technique. By this approach we extend OpenCL on 

network scale and improve level of parallelism by increasing 

number of computing nodes running parallel. As we have 

seen in the experiments, especially by using multi GPU 

servers, low latency – high bandwidth networks and 

configuring maximum allowed TCP package size to higher 

rates it would be possible to acquire a vendor - operating 

system independent, parallel and scalable GPU computing 

platform resulting speed up in overall computing 

performance. 
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