
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

25

Distributed OpenCL Distributing OpenCL Platform on

Network Scale

Barış Eskikaya

Department of Computer Engineering
Istanbul Technical University

Istanbul, Turkey

D Turgay Altılar
Department of Computer Engineering

Istanbul Technical University
Istanbul, Turkey

ABSTRACT

This paper presents a framework that extends OpenCL by

distributing computing process to many computing resources

connected via network and enables the computing resources to

run in parallel. Using JSON RPC (Remote Procedure Call

technique relying on JavaScript Object Notation) in

communication layer, Distributed OpenCL framework

provides platform and operating system independency. Using

this framework, a host program executed on a computer that

has no OpenCL support is able to use other computing

resources distributed on network in parallel. Results show that

OpenCL platform model can be extended to network scale to

provide a vendor, architecture and operating system

independent and a parallel computing environment with

reasonable communication overhead.

General Terms

Distributed computing, GPU clusters

Keywords

OpenCL, GPU, GPGPU, HPC, GPU clusters

1. INTRODUCTION
Since the architecture of Graphics Processing Units (GPU)

uses pipeline model, GPUs are convenient for processing

massive data using SIMD (Single Instruction Multiple Data)

technique which provides data-level parallelism. Although

primitive GPUs were not programmable and only used for

graphics rendering, with the improvements in GPU

technology, modern GPUs are evolved to provide

programmable interfaces and this improvement has brought

General Purpose programming on GPUs (GPGPU) concept in

use. With extensive use of this concept GPUs have been a part

of main computing resources of a computer along with CPUs

and multi-core CPUs.

As a result of widespread use of GPGPU concept, GPU

manufacturers have introduced GPGPU programming

languages such as C for Graphics, Close to Metal (from

AMD/ATI), CUDA (from NVIDIA) [1], BrookGPU (from

Stanford University) [2] and DirectCompute (from Microsoft)

[3]. However these programming languages were platform

and vendor specific so they were not supporting the use of the

programs in multi vendor environments and portability

between devices. These languages also needed developers to

be familiar with specific features of language and

architectures of devices that they aim to program.

To overcome the problems above, OpenCL framework has

been introduced by Khronos Group [4] with contribution and

collaboration of leading manufacturers such as Apple, IBM,

Intel, AMD and NVIDIA. OpenCL framework consists of a C

based language and a universal API set that enables to write

and execute programs between heterogeneous platforms such

as GPUs, CPUs and other processors. Since OpenCL

standards are being supported and accepted as common

standards by CPU and GPU vendors, it provides compatibility

and portability between vendors. Although different vendors

have different implementations of OpenCL, they comply with

the same standards for data types, method signatures and API

set.

The features described above make OpenCL a convenient

programming framework for heterogeneous environment and

abstract technical details of vendor specific implementations

and devices architectures from developers. Considering the

advantages and properties of OpenCL, we claim it is possible

to extend the benefits of OpenCL by designing a system

which consists of distributed computing resources and hosts

that use these computing resources connected via network.

In this study we propose a framework that extends OpenCL on

network scale using JSON RPC communication technique

between hosts and computing resources. Since the framework

is based on OpenCL, it covers the advantages of OpenCL such

as heterogeneous resource usage, vendor and architecture

independency, moreover it increases the level of parallelism

by increasing number of computing resources and by using

JSON RPC for communication it enables operating system

and platform independency in communication layer.

The rest of the paper is organized as follows. In Section II we

present an overview of OpenCL platform and JSON RPC, in

Section III we explain the design and implementation of

Distributed OpenCL, in Section IV we show the experiments

and test results for our study and comparison to other similar

studies on this field. In section V we present our conclusions.

2. OPENCL & JSON RPC OVERVIEW

2.1 OpenCL Overview
OpenCL (Open Computing Language) is a framework for

writing programs which execute across heterogeneous

platforms consisting of CPUs, GPUs and other processing

units. OpenCL includes a C based language (based on C99) to

write functions that execute on devices which supports

OpenCL standards and an API to control these platforms.

Target of OpenCL is to let the developers write portable,

vendor and device independent programs and abstract them

from complex technical specifications and detailed

architectures of computing devices. In our study we followed

OpenCL v1.1 specification [5].

OpenCL structure can be described as combination of the

following models:

 Platform Model

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

26

 Execution Model

 Memory Model

 Programming Model

2.2 OpenCL Platform Model
The Platform Model consists of a host connected to one or

more OpenCL devices. An OpenCL device is divided into one

or more computing units. Each computing unit is divided into

one or more processing elements. Processing elements are

where the computation is done. An OpenCL device can be a

GPU, CPU or another type of processor. OpenCL systems are

identified with version of the platform, version of devices and

version of OpenCL C language supported on the devices.

OpenCL application running on a host submits commands to

devices to run on the processing elements on the devices.

Processing elements execute single stream of instructions as

SIMD units or SPMD (Single Program Multiple Data) units

depending on the type of processing element.

2.3 OpenCL Execution Model
There are two parts for execution of an OpenCL program:

Kernels and host program. The host program defines context

for the kernels and manage their execution, and the kernels

execute one or more OpenCL devices. When a kernel is

submitted for execution by the host, an index space is defined.

For each point in the index space an instance of kernel is

created. These kernel instances are called work-items. Each

work item has a global ID which is given according to position

of corresponding point in the index space. Work-items are

organized into work groups. Processing elements in a

computing unit can concurrently execute work-items in a work

group. With this execution model, OpenCL supports data-

parallel and task-parallel programming models.

2.4 OpenCL Memory Model
The host application creates memory objects on global

memory using OpenCL API and enqueue memory commands

operating on these memory objects. Memory blocks of host

application and computing devices usually run independent. In

case of interaction is needed between host application memory

and computing device memory, either transferring of memory

blocks occur or host application uses mapping / unmapping

methods to reach memory blocks of computing devices.

2.5 JSON RPC Overview
JSON RPC is a remote procedure call protocol which sends

RPC commands between server and client by encoding data

into JSON format [6]. In JSON encoding format data is

converted to UTF-8 JSON strings and transferred via HTTP or

TCP/IP transfer protocols. In Distributed OpenCL framework,

TCP/IP communication protocol is used since it is faster than

HTTP protocol. Open source JSONRPC-CPP framework is

used for client-server communication. Some modifications are

done on the framework to decrease message size and to enable

splitting large TCP messages at TCP client, which’s size are

greater than maximum allowed TCP package size, and

remerging them at TCP server. To avoid TCP connection

starting cost for each API call, TCP connection between client

and server is opened at the first OpenCL API call from the

host application, kept alive during the execution of program

and closed at the end of the program. Native OpenCL types

are converted into native C++ types and encoded to JSON

format (see Table 1).

Table 1. Conversion for OpenCL data types into JSON

encodable C++ data types

OpenCL Type
Equivalent

C++ type

Encoding to reduce data

size

Integer types

eg: cl_int,

cl_uint,

cl_bool,

cl_ulong

int,

unsigned

int, long

unsigned int

-

Pointer types

eg:
cl_platform_id,

cl_device_id,

cl_context,

cl_mem,

cl_program,

cl_kernel

Pointer

converted to

unsigned

long

-

Data

parameters

eg:

float array,

integer array,

char array

Converted

to byte array

from void

pointer

Encoded as string using

base64 encoding

Compared to similar RPC technologies like Microsoft RPC,

XML RPC, Java RMI; JSON RPC is more suitable to use for

our framework since it provides platform independency, and

reasonable message size.

3. DISTRIBUTED OPENCL

3.1 Distributed OpenCL Overview
Distributed OpenCL is a framework that extends OpenCL on

network scale by preserving OpenCL functionality and

advantages described in the above sections. Distributed

OpenCL framework has a client-server architecture that can

consist of multiple clients and multiple servers. Distributed

OpenCL framework consists of the following components:

 Clients

 Distribution Layer

 Servers

Clients run OpenCL host applications and OpenCL API calls

from host applications are redirected to servers on the network

by distribution layer running on the client machines. OpenCL

functionality is provided on servers. Figure 1 represents the

architecture of Distributed OpenCL framework.

When the OpenCL host application running on the client

makes an API call, this call is sent to the distribution layer

running on the client. Distribution layer converts API calls to

JSON message packages by marshalling. These JSON

messages are sent to the servers registered in the system using

JSON RPC communication technique. JSON RPC server

application on the server machines listens to the incoming

JSON messages and converts these messages to OpenCL API

calls by unmarshalling. With this method, OpenCL API calls

are replicated on the server with the same parameters from the

client. Server converts responses from OpenCL computing

devices to JSON messages and send back result to client

which made the API call. Since OpenCL computing devices

keep the context and state data of program in their own

memory, servers do not keep any context or state data of client

programs. Pointers to the instances of OpenCL types such as

cl_mem, cl_context, cl_program, cl_kernel etc. that are created

by OpenCL API calls are allocated in heap section of server

memory to provide access by pointer addresses of them to use

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

27

in following OpenCL API calls. These allocated spaces are

freed when release functions such as clReleaseMemObject,

clReleaseContext etc. are called by the corresponding host

application.

Considering GPU architecture performs operations in SIMD

model, data which will be processed can be distributed to

multiple servers registered in the system. This feature reduces

the workload of one server so reduces the workload of each

processing unit in the server and results speedup for

calculation by increasing level of parallelism.

Figure 1. Distributed OpenCL framework architecture

3.2 Client
Client refers to original OpenCL host applications running on

a client machine. These host applications can be compiled to

use with Distributed OpenCL framework just by replacing

original OpenCL include directory reference to Distributed

OpenCL distribution layer include directory reference and

OpenCL library reference to distribution layer library

reference to use in linking step. After compilation, OpenCL

API calls are handled by our distribution library instead of

original OpenCL implementation.

3.3 Distribution Layer
Distribution layer is the Distributed OpenCL library running

on the client. The library consists of copies of OpenCL header

files that contains OpenCL type declarations and function

signatures, and C++ source file which simulates function

bodies for OpenCL functions declared in OpenCL v1.1

specification. OpenCL API calls are handled by our

distribution library instead of original OpenCL

implementation. For each API call, distribution library

executes corresponding functions and these functions convert

and combine parameter values into JSON messages adding

function name to call. After this step, JSON messages are sent

to server by TCP/IP based JSON RPC client running on the

distribution layer. Functions in distribution layer also convert

returned JSON messages from server into OpenCL types and

send results back to the host application. Type conversion

operations, binary data encoding for function parameters and

binary data decoding for function results are done by the

distribution library.

3.4 Server
JSON RPC server application running on the servers listens to

the corresponding ports to handle incoming JSON messages.

Corresponding handle method for the incoming JSON

messages are called by JSON RPC Server application and

parameters in the JSON message are unmarshalled into

OpenCL data types and corresponding OpenCL API function

which is declared in the JSON message is called via original

OpenCL API with parameter values in the message. Type

conversion from JSON values to OpenCL types and binary

data decoding for the data parameters in the JSON message

are done at this step. OpenCL computations are done by

computing devices (GPUs or CPUs) on the server. Return

values from the OpenCL API are marshaled into JSON format

by type conversions and binary data encoding if exist, then

result JSON message is sent back to the client. Results from

the servers are gathered, combined, unmarshalled in the client

by distribution layer and returned to host application. TCP

connection from client to the server is established at the first

call to the server and kept open during the execution of host

program to improve the performance.

Each server in the system can serve concurrently to multiple

clients or multiple host programs since OpenCL API keeps

context and state information. Pointers to the OpenCL types

like cl_mem, cl_context etc. are kept in hash maps in the

server application memory matched with corresponding host

application IDs.

3.5 Providing Parallel Execution
Since GPU performs operations in SIMD model, many

OpenCL applications can be parallelized just by partitioning

input data into blocks. For many problems such as

convolution, edge detection etc., applications can also be

parallelized by partitioning input data into overlapping blocks.

By modifying host applications to run with divided partitions

of input data, Distributed OpenCL framework provides

parallel execution. Figure 2 shows parallel execution in

Distributed OpenCL framework. After partitioning input data,

for each partition, host applications can be run in a multi-

thread architecture and results of computations can be

gathered using shared memory or similar parallel data

distribution systems.

Figure 2. Distributed OpenCL parallel execution

4. EXPERIMENTS
To measure performance of Distributed OpenCL Framework,

two sets of experiments are performed. As the first set of

experiments (Distributed OpenCL Overhead Experiments) we

compared execution times between native OpenCL (NCL),

Distributed OpenCL with client program and server program

running on the same machine (DCL Local), client program

and server program running on different machines (DCL

Remote). As the second set of experiments (Parallel Execution

Experiments) we compared execution times for client program

running on one remote server; two remote servers and four

remote servers by partitioning input data and running host

applications in parallel. We used three different host

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

28

applications executing three different kernel functions: vector

addition, 2D convolution and N-Body simulation.

During the experiments we have seen that transferred data size

is the main determinative factor for performance difference

between native OpenCL and our system. Therefore the results

we present belong to the experiments with “vector addition”

application since it sufficiently represents the characteristic

differences between two systems. Experiment results are

presented and compared considering execution times by

excluding OpenCL kernel function dynamic compilation time.

Tests are performed for various work item sizes from 32 to

1M. Since the test application adds two float arrays and

returns a result float array, data transfer size in bytes is

calculated with formula “(1)”

D.T. = 3 x sizeof(float) x Work Item Size (1)

D.T. = 12 x Work Item Size

Each test was run 10 times, median of execution times are

presented as the results. For remote tests, client and servers

are connected with 100 Mbit Ethernet (LAN). Specifications

for the computers that we used in experiments can be seen in

Table 2. Detailed specifications for the GPUs can be obtained

from web sites of vendors [7] [8].

Table 2. Test Computers

Comp

ID
OS CPU RAM GPU

A
Windows 7

64 bit

Intel

Core i7

4 GB

DDR 3

NVIDIA

525M

B
Windows 7

64 bit

Intel

Core i7

4 GB

DDR 3

ATI

RADEON

HD 6370M

C
Ubuntu

Linux 64 bit

Intel

Core 2

Duo

4 GB

DDR 3

NVIDIA

240M

D
Ubuntu

Linux 64 bit

Intel

Core i7

4 GB

DDR 3

NVIDIA

540M

E
Windows 7

64 bit

Intel

Core i7

8 GB

DDR 3

NVIDIA

555M

F
Windows 7

64 bit

Intel

Core i5

3 GB

DDR 3

NVIDIA

520M

4.1 Distributed OpenCL Overhead

Experiments
Overhead experiments are done to compare performance of

native OpenCL and Distributed OpenCL framework.

 Test 1: Test application is run with native OpenCL on

the computers. Results are presented in Table 3 for

comp. A, B and C (NCL).

 Test 2: Test application is run with Distributed OpenCL

on the computers as client and server application

running on the same machine. Results are presented in

Table 3 for comp. A, C, and D (DCL Local).

 Test 3: Test application is run with Distributed OpenCL

on the computers as client and server application

running on different machines. Tests are performed with

combinations of two machines. Results are presented in

Table 3 for comp. C (client) to A (server), A (client) to

E (server), A (client) to C (server) and C (client) to D

(server) (DCL Remote).

4.2 Parallel Execution Experiments
Parallel execution experiments are done to measure

Distributed OpenCL framework performance when the work

load is distributed to more than one computing nodes running

parallel.

 Test 1: Test application is run with Distributed OpenCL

on combinations of two machines as one client and one

server. Results are presented in Table 4 for comp. C

(client) to A (server), A (client) to E (server) (DCL

Remote 1 Comp).

 Test 2: Test application is run with Distributed OpenCL

on combinations of three machines as one client and two

servers. Results are presented in Table 4 for comp. C

(client) to A and E (servers), A (client) to D and E

(servers) (DCL Remote 2 Comp).

 Test 3: Test application is run with Distributed OpenCL

on combinations of five machines as one client and four

servers. Results are presented in Table 4 for comp. C

(client) to A, B, D and E (servers); F (client) to A, B, D

and E (servers) (DCL Remote 4 Comp).

4.3 Evaluation of Results
In the first set of experiments (see Table 3), for Test 1 we

made the following inferences:

 Execution time does not increase linearly or one-to-one

by the increase in work item size since GPU architecture

executes the work items in parallel.

 Native OpenCL performance between NVIDIA GPU

(NCL A) and an equivalent ATI GPU (NCL B) does not

differ too much.

 However for an earlier model NVIDIA GPU (NCL C),

native OpenCL execution time may differ dramatically

when we increase work item size since number of cores

and buffer size is smaller.

In Test 2 it can be seen:

 When we compare DCL Local to the NCL, execution

time increases because of communication overhead.

Communication overhead is especially effective for

OpenCL functions such as clEnqueueWriteBuffer,

clEnqueueReadBuffer, clCreateBuffer, which send or

receive data between host application and GPU device.

Communication overhead increases near linear by the

increase in data transfer size at large data sizes.

 Depending on the operating system configurations, TCP

overhead increases faster after a certain data transfer

size because data cannot be transferred in one TCP

package.

 For smaller data sizes sending data from Linux

operating systems to Linux or Windows operating

systems is faster because of operating system

characteristics. As the transfer size increases, this major

difference cannot be seen.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

29

Table 3. Results for the first experiment set (HOST ID: ID of client computer, GPU ID: ID of server computer, D.T.: Data

Transfer size, E.T.: Execution Time)

 NCL NCL NCL

DCL

Local

DCL

Local

DCL

Local

DCL

Remote

DCL

Remote

DCL

Remote

DCL

Remote

 Test # T 1 T 1 T 1 T 2 T 2 T 2 T 3 T 3 T 3 T 3

 HOST ID C A A C

 GPU ID A B C A C D A E C D

Work

Item

Size D.T. (B)

D.T.

(KB)

D.T.

(MB)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

E.T.

(ms)

32 384 0 0 2 4 2 22 2 2 8 46 44 8

64 768 1 0 2 4 2 22 3 3 8 44 45 8

128 1536 2 0 3 5 2 23 3 3 8 44 46 9

256 3072 3 0 5 8 2 25 4 4 11 49 48 12

1024 12288 12 0 6 9 3 23 13 9 15 52 50 15

4096 49152 48 0 9 11 12 50 48 32 52 53 52 49

16384 196608 192 0 10 13 44 142 156 104 164 111 158 125

65536 786432 768 1 11 16 170 325 355 298 330 325 423 328

262144 3145728 3072 3 14 18 702 507 986 504 896 892 1325 878

524288 6291456 6144 6 15 19 1356 979 2016 965 1572 1746 2896 1753

1048576 12582912 12288 12 16 22 2749 1941 3457 1906 3167 3309 5268 3468

Table 4. Results for the second experiment set (HOST ID: ID of client computer, GPU IDs: ID of server computers, D.T.: Data

Transfer size, E.T.: Execution Time)

DCL

Remote 1

Comp

DCL

Remote 1

Comp

DCL

Remote 2

Comp

DCL

Remote 2

Comp

DCL

Remote 4

Comp

DCL

Remote 4

Comp

 Test # Test 1 Test 1 Test 2 Test 2 Test 3 Test 3

HOST

ID C A C A C F

 GPU IDs A E A - E D - E A - B - D - E A - B - D - E

Work

Item

Size D.T. (B)

D.T.

(KB)

D.T.

(MB) E.T. (ms) E.T. (ms) E.T. (ms) E.T. (ms) E.T. (ms) E.T. (ms)

32 384 0 0 8 46 9 44 8 42

64 768 1 0 8 44 9 44 9 43

128 1536 2 0 8 44 9 46 9 44

256 3072 3 0 11 49 11 46 9 45

1024 12288 12 0 15 52 14 48 10 47

4096 49152 48 0 52 53 29 53 16 52

16384 196608 192 0 164 111 89 75 54 52

65536 786432 768 1 330 325 181 182 165 123

262144 3145728 3072 3 896 892 452 448 334 330

524288 6291456 6144 6 1572 1746 833 854 487 489

1048576 12582912 12288 12 3167 3309 1637 1622 923 918

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

30

 While communication overhead is independent from the

GPU models, impact of communication overhead to the

total execution time may change since execution time

for the OpenCL functions on the server machine

changes (NCL A vs DCL Local A, NCL C vs, DCL

Local C).

In Test 3 we have seen that when we compare DCL Local to

DCL Remote, execution times increases to 1.5 to 2 times with

100 Mbit Ethernet connection.

The second set of experiments (see Table 4) shows us

distributing workload to multiple computing nodes running

parallel increases performance. In Figure 3 it can also be seen,

execution times decreases almost by the same ratio with the

increase in number of computing nodes. For very small data

sizes execution time does not change by increasing number of

nodes because in this range rather than OpenCL input - output

data transfer operations, other OpenCL function calls are also

effective on execution time.

Figure 3. Distributed OpenCL parallel execution

4.4 Comparison to the Previous Studies
During our research we have come across several studies such

as Many GPUs Package (MPG) [9], Virtual OpenCL Cluster

Platform (VCL) [10], Remote CUDA (rCUDA) [11], Hybrid

OpenCL [12], CLuMPI [13] and GPU Clusters for High-

Performance Computing [14] on distributed GPGPU

computing. These implementations are either vendor specific

or operating system dependent. In our study, we have

designed and implemented a both vendor independent and

operating system independent framework by using OpenCL as

GPGPU computing platform and TCP / IP protocol based

JSON RPC communication technique.

5. CONCLUSIONS
OpenCL exposes a framework with a universal API set that

enables to write and execute programs between

heterogeneous platforms such as GPUs, CPUs and other

processors. It also provides platform – vendor independency

and portability. By increasing acceptance of OpenCL

standards, and also contribution and collaboration of leading

manufacturers its usage also increases day by day compared

to other GPGPU languages / frameworks.

Considering features and architecture of OpenCL it also

allows distribution of computing nodes on network scale. In

this study we presented a framework that consists of clients

where host applications run, servers where computing devices

run and communication between them is supplied using JSON

RPC technique. By this approach we extend OpenCL on

network scale and improve level of parallelism by increasing

number of computing nodes running parallel. As we have

seen in the experiments, especially by using multi GPU

servers, low latency – high bandwidth networks and

configuring maximum allowed TCP package size to higher

rates it would be possible to acquire a vendor - operating

system independent, parallel and scalable GPU computing

platform resulting speed up in overall computing

performance.

6. REFERENCES
[1] “CUDA.” [Online]. Available:

http://www.nvidia.com/cuda

[2] “BrookGPU” [Online]. Available:

http://graphics.stanford.edu/projects/brookgpu/

[3] “Directcompute.” [Online]. Available:

http://msdn.microsoft.com/directx

[4] “OpenCL - The open standard for parallel programming

of heterogeneous systems” [Online]. Available:

http://www.khronos.org/opencl/

[5] “The OpenCL Specification” [Online]. Available:

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[6] “JsonRpc-Cpp - OpenSource JSON-RPC implementation

for C++” [Online].

Available: http://jsonrpc-cpp.sourceforge.net/

[7] “NVIDIA GPU Models” [Online]. Available:

http://www.geforce.com/hardware/notebook-gpus

[8] “ATI GPU Models” [Online]. Available:

http://www.amd.com/us/products/notebook/graphics/Pag

es/notebook-graphics.aspx

[9] A. Barak, T. Ben-Nun, E. Levy and A. Shiloh “A

Package for OpenCL Based Heterogeneous Computing

on Clusters with Many GPU Devices” in IEEE

International Conference on Cluster Computing.

[10] “The Virtual OpenCL (VCL) Cluster Platform” [Online].

Available: http://www.mosix.org/vcl/VCL_wp.pdf

[11] “rCUDA.” [Online]. Available: http://www.rcuda.net/.

[12] Ryo Aoki, Shuichi Oikava, Ryoji Tsuchiyama, Takashi

Nakamura “Improving Hybrid OpenCL Performance by

High Speed Networks” 2010 First IEEE international

Conference on Networking and Computing

[13] “CLuMPI.” [Online]. Available:

http://clumpi.sourceforge.net

[14] V. Kindratenko et al. “GPU Clusters for High-

Performance Computing”

