Impartial Distance Calculation using Android

Rahul Kulhalli
B.E. Computer
MMCOE, Pune

Tejas Belvalkar
B.E. Computer
MMCOE, Pune

Tejas Khajanchee
B.E. Computer
MMCOE, Pune

ABSTRACT

Often, conventional methods for deciding a common meeting place are quite time consuming, as it involves individual confirmation, argument about deciding the common meeting place and the impartial distance factor. Psychology indicates that a majority of people tend to cancel group meetings due to the feeling that 'others have chosen a meeting place that is comparatively closer to their own homes'. In other words, the meeting place seems 'partial' to some. We hence coin this feeling as the partiality factor.

The motivation of this project, thus, is to introduce the 'impartial factor' in meetings, so as to eradicate partiality whilst choosing a meeting spot. (Please note that this term is self-coined, so as to denote a certain 'degree' of impartiality.)

We shall be creating an Android application that effectively calculates the real time coordinates of all the members of a group, and calculates a smart, scalable and reliable centroid. The meeting places in this restricted vicinity can then be chosen on the basis of voting. Since the locality of the meeting place is strictly restricted by the application's algorithm itself, it will most likely completely eradicate the need of constant compromises and cancellations.

General Terms

Android, Distance calculation, Client-server, Google APIs

Keywords

1. INTRODUCTION

It is a very commonly observed phenomenon when people decide a meeting place, and it is time consuming, if not slightly irritating, as it involves individual confirmation, argument about the personal preferences of meeting places, and the partial distance factor. Psychology has proven that the most common reason that people who cancel meetings give is that of a feeling which somehow makes them believe that the meeting place is partially decided,i.e., they feel that the meeting place is somehow biased. This fact alone goes a long way to prove that if, by any chance, a meeting place which is completely impartial (in terms of distance, not personal preferences) is decided, the rate of people canceling out on social meetings would decrease to some extent or the other, thus alleviating the stress of not having to attend these meetings. This fact can further prove that the partiality factor plays a direct and major role in the person's decision to attend said meetings.

2. LITERATURE SURVEY

<table>
<thead>
<tr>
<th>Application Name</th>
<th>Developer Name</th>
<th>Size of Application</th>
<th>Features</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting</td>
<td>Meetup</td>
<td>6.4 MB</td>
<td>Grouping according to preferences 1) Individual group preferences 2) Real Time 3) Minimum cost: distance 4) Integrates hardware to manage</td>
<td>No waiting, chat with random people 3) Suggestions more than 10 languages 4) No personal information re-uses 5) Shows connection errors available to top 5 6) Shows people from previous country</td>
<td></td>
</tr>
<tr>
<td>Mosio</td>
<td>MOCO Inc.</td>
<td>6.3 MB</td>
<td>Seating in control meeting rooms 1) Choose where and what type of meeting you want 2) Chat that has neither (grouped-users) 3) Connects to chat</td>
<td>No option for deciding the called members 4) Connect chat to a chat in another city</td>
<td></td>
</tr>
<tr>
<td>Google Plus</td>
<td>google</td>
<td>11.2 MB</td>
<td>1) Choose where and what type of meeting you want 2) Chat that has neither (grouped-users) 3) Connects to chat</td>
<td>No option for deciding the called members 4) Connect chat to a chat in another city</td>
<td></td>
</tr>
<tr>
<td>Real Talk</td>
<td>Real Talk Pvt. Ltd.</td>
<td>22.16 MB</td>
<td>Whisper messages that disappear afterwards. 1) Free calls & messages 2) Connect people with same interest and lets others around know</td>
<td>Free calls & messages 2) Connect people with same interest and lets others around know</td>
<td></td>
</tr>
</tbody>
</table>

Fig 1: Literature Survey (I)

<table>
<thead>
<tr>
<th>Application Name</th>
<th>Developer Name</th>
<th>Size of Application</th>
<th>Features</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting</td>
<td>Xphones Inc.</td>
<td>3.3 MB</td>
<td>1) Group-Kicking app 2) Create event with or without map</td>
<td>1) Automatically controlled GPS points if U.R. 2) Connection to save battery 3) Add a duration reminder by RR</td>
<td>1) Connecting issues sometimes 2) Sound issues</td>
</tr>
<tr>
<td>Synit</td>
<td>virtue studios</td>
<td>2.75 MB</td>
<td>Suggest time slot, auto synchronization with calendar 1) Easy-to-use 2) Voting based on your location</td>
<td>1) Easy-to-use 2) Voting based on your location</td>
<td></td>
</tr>
<tr>
<td>Map Contact</td>
<td>EverApps</td>
<td>3.06 MB</td>
<td>Automatically notifies people a fixed number of spots near to your location. 1) 3D Map view 2) Ability to find your location</td>
<td>1) Can't create group. 2) People do not want change their group</td>
<td></td>
</tr>
</tbody>
</table>

Fig 2: Literature Survey (II)

3. GOALS AND OBJECTIVES

3.1 Objectives

The objectives for this project are:

1) To determine an unbiased meeting location (assuming that cancellations are solely due to distance).
2) To eradicate (to some extent) the partial distance factor.
3) To reduce the time required to decide meeting places. (Almost no time will be required)
4) To maximize the ratio of the actual volume of people attending the meeting to the expected volume of people attending the meeting.
3.2 Objectives
1) After the algorithm finishes processing, it should find actual meeting places.
2) Each member of the group should get the individual route from his/her location to the final meeting place.
3) The members of the group should be able to decide the kind of meeting place. (For e.g., cafes, take-away joints, restaurants, etc.)

4. SYSTEM DESCRIPTION
4.1 Inputs and Outputs
4.1.1 Inputs
The major inputs to the system would be:
1) Set of user coordinates.
2) (Proposed) Vote for the shortlisted locations

4.1.2 Outputs
The major outputs of the system would be:
1) The calculated midpoint
2) The list of shortlisted meeting places
3) Details of the final place
4) Directions from current user location to final meeting place

4.2 Major Data Types
The major data types to be used in this are:
1) ArrayList
2) LatLng
3) HashMap
4) JSON
5) Bundle
6) String
7) Double

4.3 Bounds on I/O
The major bounds on I/O are:
1) Inputs should be of type 'double'.
2) Input co-ordinates should not contain alphabets or special symbols.
3) The ordering of the inputs should always be [Latitude, Longitude]
4) The Latitude value should always be in the range [-90, 90]
5) The Latitude value should always be in the range [-90, 90]

5. ALGORITHMIC DESIGN
The algorithm we have chosen to calculate the midpoint of the incoming Latitudes and Longitudes is that of the Simple Midpoint algorithm. The algorithm simply computes the sum of all the latitudes and longitudes, and then divides the sum by the number of Latitudes and Longitudes.

To illustrate:
Algorithm ComputeMidpoint returns Location
For i=0 to SIZE do
Latitude_sum += getLatitude(i);
Longitude_sum += getLongitude(i);
Latitude_mid = Latitude_sum/SIZE;
Longitude_mid = Longitude_sum/SIZE;
Return new Location(Latitude_mid, Longitude_mid);

6. OUTCOMES AND APPLICATIONS
6.1 Project outcomes:
1) Rapid suggestions for meeting points.
2) Hassle-free and autonomous decision making.
3) Removal of the partiality factor.
4) Wider variety of meeting places to choose from.

6.2 Applications
1) Hassle-free decision making.
2) Automated, real time processing.
3) Avoids unnecessary confusions and potential quarrels.
4) Elimination of the partiality factor.

7. ACKNOWLEDGMENTS
We would also like to take this opportunity and thank our internal guide Prof. Shailaja Jadhav for giving us all the help and guidance we needed. We are really grateful to her, for she kindly extended all kinds of valuable suggestions, criticisms, workarounds, and strictly monitored our progress, making sure we never derailed off-track.

We are also grateful to Prof. Harmeet Khanuja, Head of Computer Engineering Department, Marathwada Mitra Mandal's College of Engineering, for her indispensable support, criticisms and suggestions.

Lastly, we would like to offer our special thanks to Mr. Vinayak Kulkarni for making provisions for various resources such as workstations (with all the necessary softwares), a stable internet connection and much more, which proved to be extremely beneficial for our project.

8. REFERENCES

